File size: 5,149 Bytes
24a6868
 
 
 
 
 
 
ccacd4d
ceadb77
dc704d6
24a6868
 
 
 
 
 
 
 
 
 
7a3dfb1
11453ec
24a6868
 
 
6095378
 
 
 
 
 
 
 
7de4c3e
c7f68b4
 
 
 
0563fad
24a6868
 
 
 
 
 
 
 
35915ac
b0abbc2
 
f4e97ee
 
0563fad
 
35915ac
24a6868
b0abbc2
 
 
fd37f3e
f2280ac
 
b0abbc2
 
 
 
 
 
f2280ac
 
b0abbc2
f97103a
b0abbc2
24a6868
d62c968
35915ac
24a6868
 
 
c6a4957
e9947e2
7d5447f
ebc69eb
0563fad
24a6868
0563fad
24a6868
 
63ddf6d
c7f68b4
ffaf784
 
24a6868
3389734
 
 
00acfc9
7de4c3e
6095378
00acfc9
44dca96
00acfc9
6095378
 
35915ac
6095378
11453ec
6095378
 
212b184
 
e9947e2
6095378
 
3389734
24a6868
6095378
e7066e9
24a6868
35915ac
3389734
24a6868
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os

from diffusers import StableDiffusionXLPipeline, ControlNetModel
from diffusers.models import AutoencoderKL

# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "EasyNegative, deformed, distorted, disfigured, disconnected, disgusting, mutation, mutated, blur, blurry, scribble, abstract, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, porn, nude, nudity, naked, nsfw"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# Functions
def save_image(img, seed):
    name = f"{seed}-{uuid.uuid4()}.png"
    img.save(name)
    return name
    
def get_seed(seed):
    seed = seed.strip()
    if seed.isdigit():
        return int(seed)
    else:
        return random.randint(0, MAX_SEED)

@spaces.GPU(duration=30)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):

    repo = None
    filter_input = filter_input or ""
    negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
    seed = get_seed(seed)

    print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)

    if model == "Anime":   
        vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
        controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)
        repo = StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
        steps = (not steps or steps < 0 and 16) or steps
        guidance = (not guidance or guidance < 0 and 7) or guidance
    else:
        vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
        controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)
        repo = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
        repo.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
        repo.set_adapters(["base"], adapter_weights=[0.7])
        steps = (not steps or steps < 0 and 16) or steps
        guidance = (not guidance or guidance < 0 and 3) or guidance
        
    repo.to(DEVICE)
    
    parameters  = {
        "prompt": input,
        "negative_prompt": filter_input + negative_input,
        "height": height,
        "width": width,
        "num_inference_steps": steps,
        "guidance_scale": guidance,
        "num_images_per_prompt": number,
        "controlnet_conditioning_scale": 1,
        "cross_attention_kwargs": {"scale": 1},
        "generator": torch.Generator().manual_seed(seed),
        "use_resolution_binning": True,
        "output_type":"pil",
    }
    
    images = repo(**parameters).images
    image_paths = [save_image(img, seed) for img in images]
    print(image_paths)
    return image_paths

def cloud():
    print("[CLOUD] | Space maintained.")


# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.")
        
    with gr.Column():
        input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
        filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
        negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
        model = gr.Dropdown(label="Models", choices=["Default", "Anime"], value="Default")
        height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
        width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
        steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps")
        guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance")
        number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
        seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")

    with gr.Column():
        images = gr.Gallery(columns=1, label="Image")
            
    submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)