Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,22 +18,22 @@ This space demonstrates model [DeepSeek-Coder](https://huggingface.co/deepseek-a
|
|
18 |
**You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
|
19 |
"""
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
@spaces.GPU
|
39 |
def generate(
|
@@ -48,11 +48,8 @@ def generate(
|
|
48 |
) -> Iterator[str]:
|
49 |
global total_count
|
50 |
total_count += 1
|
51 |
-
print(
|
52 |
-
|
53 |
-
if use_cuda:
|
54 |
-
os.system("nvidia-smi")
|
55 |
-
|
56 |
conversation = []
|
57 |
if system_prompt:
|
58 |
conversation.append({"role": "system", "content": system_prompt})
|
@@ -61,16 +58,14 @@ def generate(
|
|
61 |
conversation.append({"role": "user", "content": message})
|
62 |
|
63 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
64 |
-
|
65 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
66 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
67 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
68 |
-
|
69 |
input_ids = input_ids.to(device)
|
70 |
|
71 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
72 |
generate_kwargs = dict(
|
73 |
-
input_ids
|
74 |
streamer=streamer,
|
75 |
max_new_tokens=max_new_tokens,
|
76 |
do_sample=False,
|
@@ -80,7 +75,6 @@ def generate(
|
|
80 |
repetition_penalty=repetition_penalty,
|
81 |
eos_token_id=32021
|
82 |
)
|
83 |
-
|
84 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
85 |
t.start()
|
86 |
|
@@ -89,7 +83,6 @@ def generate(
|
|
89 |
outputs.append(text)
|
90 |
yield "".join(outputs).replace("<|EOT|>", "")
|
91 |
|
92 |
-
|
93 |
chat_interface = gr.ChatInterface(
|
94 |
fn=generate,
|
95 |
additional_inputs=[
|
|
|
18 |
**You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
|
19 |
"""
|
20 |
|
21 |
+
# Check if CUDA is available
|
22 |
+
if not torch.cuda.is_available():
|
23 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo might be slow on CPU.</p>"
|
24 |
+
device = torch.device("cpu")
|
25 |
+
else:
|
26 |
+
device = torch.device("cuda")
|
27 |
+
model_id = "deepseek-ai/deepseek-coder-33b-instruct"
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
30 |
+
tokenizer.use_default_system_prompt = False
|
31 |
+
|
32 |
+
# Fallback to CPU for model loading if CUDA is unavailable
|
33 |
+
if not torch.cuda.is_available():
|
34 |
+
model_id = "deepseek-ai/deepseek-coder-33b-instruct"
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu")
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
37 |
|
38 |
@spaces.GPU
|
39 |
def generate(
|
|
|
48 |
) -> Iterator[str]:
|
49 |
global total_count
|
50 |
total_count += 1
|
51 |
+
print(total_count)
|
52 |
+
os.system("nvidia-smi")
|
|
|
|
|
|
|
53 |
conversation = []
|
54 |
if system_prompt:
|
55 |
conversation.append({"role": "system", "content": system_prompt})
|
|
|
58 |
conversation.append({"role": "user", "content": message})
|
59 |
|
60 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
61 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
62 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
63 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
64 |
input_ids = input_ids.to(device)
|
65 |
|
66 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
generate_kwargs = dict(
|
68 |
+
{"input_ids": input_ids},
|
69 |
streamer=streamer,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=False,
|
|
|
75 |
repetition_penalty=repetition_penalty,
|
76 |
eos_token_id=32021
|
77 |
)
|
|
|
78 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
79 |
t.start()
|
80 |
|
|
|
83 |
outputs.append(text)
|
84 |
yield "".join(outputs).replace("<|EOT|>", "")
|
85 |
|
|
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
additional_inputs=[
|