Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
from threading import Thread
|
4 |
from typing import Iterator
|
5 |
|
@@ -10,27 +9,30 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStream
|
|
10 |
|
11 |
MAX_MAX_NEW_TOKENS = 2048
|
12 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
13 |
-
total_count=0
|
14 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
15 |
|
16 |
DESCRIPTION = """\
|
17 |
# DeepSeek-33B-Chat
|
18 |
-
|
19 |
This space demonstrates model [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) by DeepSeek, a code model with 33B parameters fine-tuned for chat instructions.
|
20 |
-
|
21 |
**You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
|
22 |
"""
|
23 |
|
24 |
-
|
25 |
-
|
26 |
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
@spaces.GPU
|
@@ -46,8 +48,11 @@ def generate(
|
|
46 |
) -> Iterator[str]:
|
47 |
global total_count
|
48 |
total_count += 1
|
49 |
-
print(total_count)
|
50 |
-
|
|
|
|
|
|
|
51 |
conversation = []
|
52 |
if system_prompt:
|
53 |
conversation.append({"role": "system", "content": system_prompt})
|
@@ -56,31 +61,33 @@ def generate(
|
|
56 |
conversation.append({"role": "user", "content": message})
|
57 |
|
58 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
59 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
60 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
61 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
62 |
-
|
|
|
63 |
|
64 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
65 |
generate_kwargs = dict(
|
66 |
-
|
67 |
streamer=streamer,
|
68 |
max_new_tokens=max_new_tokens,
|
69 |
do_sample=False,
|
70 |
top_p=top_p,
|
71 |
top_k=top_k,
|
72 |
num_beams=1,
|
73 |
-
# temperature=temperature,
|
74 |
repetition_penalty=repetition_penalty,
|
75 |
eos_token_id=32021
|
76 |
)
|
|
|
77 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
78 |
t.start()
|
79 |
|
80 |
outputs = []
|
81 |
for text in streamer:
|
82 |
outputs.append(text)
|
83 |
-
yield "".join(outputs).replace("<|EOT|>","")
|
84 |
|
85 |
|
86 |
chat_interface = gr.ChatInterface(
|
@@ -94,13 +101,6 @@ chat_interface = gr.ChatInterface(
|
|
94 |
step=1,
|
95 |
value=DEFAULT_MAX_NEW_TOKENS,
|
96 |
),
|
97 |
-
# gr.Slider(
|
98 |
-
# label="Temperature",
|
99 |
-
# minimum=0,
|
100 |
-
# maximum=4.0,
|
101 |
-
# step=0.1,
|
102 |
-
# value=0,
|
103 |
-
# ),
|
104 |
gr.Slider(
|
105 |
label="Top-p (nucleus sampling)",
|
106 |
minimum=0.05,
|
|
|
1 |
import os
|
|
|
2 |
from threading import Thread
|
3 |
from typing import Iterator
|
4 |
|
|
|
9 |
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
+
total_count = 0
|
13 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
14 |
|
15 |
DESCRIPTION = """\
|
16 |
# DeepSeek-33B-Chat
|
|
|
17 |
This space demonstrates model [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) by DeepSeek, a code model with 33B parameters fine-tuned for chat instructions.
|
|
|
18 |
**You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
|
19 |
"""
|
20 |
|
21 |
+
# Проверяем доступность GPU
|
22 |
+
use_cuda = torch.cuda.is_available()
|
23 |
|
24 |
+
if not use_cuda:
|
25 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 Performance may be significantly slower.</p>"
|
26 |
|
27 |
+
# Выбор устройства
|
28 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
29 |
+
torch_dtype = torch.bfloat16 if use_cuda else torch.float32
|
30 |
+
|
31 |
+
# Загрузка модели и токенизатора
|
32 |
+
model_id = "deepseek-ai/deepseek-coder-33b-instruct"
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, device_map="auto" if use_cuda else None)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
35 |
+
tokenizer.use_default_system_prompt = False
|
36 |
|
37 |
|
38 |
@spaces.GPU
|
|
|
48 |
) -> Iterator[str]:
|
49 |
global total_count
|
50 |
total_count += 1
|
51 |
+
print(f"Request number: {total_count}")
|
52 |
+
|
53 |
+
if use_cuda:
|
54 |
+
os.system("nvidia-smi")
|
55 |
+
|
56 |
conversation = []
|
57 |
if system_prompt:
|
58 |
conversation.append({"role": "system", "content": system_prompt})
|
|
|
61 |
conversation.append({"role": "user", "content": message})
|
62 |
|
63 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
64 |
+
|
65 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
66 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
67 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
68 |
+
|
69 |
+
input_ids = input_ids.to(device)
|
70 |
|
71 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
72 |
generate_kwargs = dict(
|
73 |
+
input_ids=input_ids,
|
74 |
streamer=streamer,
|
75 |
max_new_tokens=max_new_tokens,
|
76 |
do_sample=False,
|
77 |
top_p=top_p,
|
78 |
top_k=top_k,
|
79 |
num_beams=1,
|
|
|
80 |
repetition_penalty=repetition_penalty,
|
81 |
eos_token_id=32021
|
82 |
)
|
83 |
+
|
84 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
85 |
t.start()
|
86 |
|
87 |
outputs = []
|
88 |
for text in streamer:
|
89 |
outputs.append(text)
|
90 |
+
yield "".join(outputs).replace("<|EOT|>", "")
|
91 |
|
92 |
|
93 |
chat_interface = gr.ChatInterface(
|
|
|
101 |
step=1,
|
102 |
value=DEFAULT_MAX_NEW_TOKENS,
|
103 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
gr.Slider(
|
105 |
label="Top-p (nucleus sampling)",
|
106 |
minimum=0.05,
|