GPT-OSS / app.py
Spestly's picture
Update app.py
a2633ea verified
raw
history blame
12.7 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces
import re
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configurations
MODELS = {
"Athena-R3X 8B": "Spestly/Athena-R3X-8B",
"Athena-R3X 4B": "Spestly/Athena-R3X-4B",
"Athena-R3 7B": "Spestly/Athena-R3-7B",
"Athena-3 3B": "Spestly/Athena-3-3B",
"Athena-3 7B": "Spestly/Athena-3-7B",
"Athena-3 14B": "Spestly/Athena-3-14B",
"Athena-2 1.5B": "Spestly/Athena-2-1.5B",
"Athena-1 3B": "Spestly/Athena-1-3B",
"Athena-1 7B": "Spestly/Athena-1-7B"
}
# Models that need the enable_thinking parameter
THINKING_ENABLED_MODELS = ["Spestly/Athena-R3X-4B"]
# Cache for loaded models
loaded_models = {}
@spaces.GPU
def load_model(model_id):
"""Load model and tokenizer once and cache them"""
try:
if model_id not in loaded_models:
logger.info(f"🚀 Loading {model_id}...")
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
load_time = time.time() - start_time
logger.info(f"✅ Model loaded in {load_time:.2f}s")
loaded_models[model_id] = (model, tokenizer, load_time)
return loaded_models[model_id]
except Exception as e:
logger.error(f"Error loading model {model_id}: {str(e)}")
raise gr.Error(f"Failed to load model {model_id}. Please try another model.")
@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
"""Generate response using the specified model"""
try:
model, tokenizer, _ = load_model(model_id)
# Build messages in proper chat format
messages = []
system_prompt = (
"You are Athena, a helpful, harmless, and honest AI assistant. "
"You provide clear, accurate, and concise responses to user questions. "
"You are knowledgeable across many domains and always aim to be respectful and helpful. "
"You are finetuned by Aayan Mishra"
)
messages.append({"role": "system", "content": system_prompt})
# Add conversation history
for msg in conversation:
messages.append(msg)
# Add current user message
messages.append({"role": "user", "content": user_message})
# Check if this model needs the enable_thinking parameter
if model_id in THINKING_ENABLED_MODELS:
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
else:
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
generation_start = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
do_sample=True,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generation_time = time.time() - generation_start
response = tokenizer.decode(
outputs[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
).strip()
logger.info(f"Generation time: {generation_time:.2f}s")
return response, generation_time
except Exception as e:
logger.error(f"Error in generate_response: {str(e)}")
raise gr.Error(f"Error generating response: {str(e)}")
def format_response_with_thinking(response):
"""Format response to handle <think></think> tags"""
if '<think>' in response and '</think>' in response:
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
match = re.search(pattern, response, re.DOTALL)
if match:
before_thinking = match.group(1).strip()
thinking_content = match.group(3).strip()
after_thinking = match.group(4).strip()
html = f"{before_thinking}\n"
html += f'<div class="thinking-container">'
html += f'<button class="thinking-toggle"><div class="thinking-icon"></div> Thinking completed <span class="dropdown-arrow">▼</span></button>'
html += f'<div class="thinking-content hidden">{thinking_content}</div>'
html += f'</div>\n'
html += after_thinking
return html
return response
def validate_input(message):
"""Validate user input"""
if not message or not message.strip():
raise gr.Error("Message cannot be empty")
if len(message) > 2000:
raise gr.Error("Message too long (max 2000 characters)")
return message
def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
"""Process a new message and update the chat history"""
try:
# Validate input
message = validate_input(message)
# Get model ID
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
# Show generating message
yield "", history + [(message, "Generating response...")], conversation_state, gr.update(visible=True)
# Generate response
response, generation_time = generate_response(
model_id, conversation_state, message, max_length, temperature
)
# Update conversation state
conversation_state.append({"role": "user", "content": message})
conversation_state.append({"role": "assistant", "content": response})
# Limit conversation history to last 10 exchanges
if len(conversation_state) > 20: # 10 user + 10 assistant messages
conversation_state = conversation_state[-20:]
# Format the response for display
formatted_response = format_response_with_thinking(response)
# Update the visible chat history
updated_history = history[:-1] + [(message, formatted_response)]
yield "", updated_history, conversation_state, gr.update(visible=False)
except Exception as e:
logger.error(f"Error in chat_submit: {str(e)}")
error_message = f"Error: {str(e)}"
yield error_message, history, conversation_state, gr.update(visible=False)
def clear_conversation():
"""Clear the conversation history"""
return [], [], gr.update(visible=False)
css = """
.message {
padding: 10px;
margin: 5px;
border-radius: 10px;
}
.thinking-container {
margin: 10px 0;
}
.thinking-toggle {
background-color: rgba(30, 30, 40, 0.8);
border: none;
border-radius: 25px;
padding: 8px 15px;
cursor: pointer;
font-size: 0.95em;
margin-bottom: 8px;
color: white;
display: flex;
align-items: center;
gap: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
transition: background-color 0.2s;
width: auto;
max-width: 280px;
}
.thinking-toggle:hover {
background-color: rgba(40, 40, 50, 0.9);
}
.thinking-icon {
width: 16px;
height: 16px;
border-radius: 50%;
background-color: #6366f1;
position: relative;
overflow: hidden;
}
.thinking-icon::after {
content: "";
position: absolute;
top: 50%;
left: 50%;
width: 60%;
height: 60%;
background-color: #a5b4fc;
transform: translate(-50%, -50%);
border-radius: 50%;
}
.dropdown-arrow {
font-size: 0.7em;
margin-left: auto;
transition: transform 0.3s;
}
.thinking-content {
background-color: rgba(30, 30, 40, 0.8);
border-left: 2px solid #6366f1;
padding: 15px;
margin-top: 5px;
margin-bottom: 15px;
font-size: 0.95em;
color: #e2e8f0;
font-family: monospace;
white-space: pre-wrap;
overflow-x: auto;
border-radius: 5px;
line-height: 1.5;
}
.hidden {
display: none;
}
.progress-container {
text-align: center;
margin: 10px 0;
color: #6366f1;
}
"""
js = """
function setupThinkingToggle() {
document.querySelectorAll('.thinking-toggle').forEach(button => {
if (!button.dataset.listenerAdded) {
button.addEventListener('click', function() {
const content = this.nextElementSibling;
content.classList.toggle('hidden');
const arrow = this.querySelector('.dropdown-arrow');
arrow.textContent = content.classList.contains('hidden') ? '▼' : '▲';
});
button.dataset.listenerAdded = 'true';
}
});
}
document.addEventListener('DOMContentLoaded', () => {
setupThinkingToggle();
const observer = new MutationObserver((mutations) => {
setupThinkingToggle();
});
observer.observe(document.body, {
childList: true,
subtree: true
});
});
"""
# Create Gradio interface
with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
gr.Markdown("# 🚀 Athena Playground Chat")
gr.Markdown("*Powered by HuggingFace ZeroGPU*")
# State to keep track of the conversation for the model
conversation_state = gr.State([])
# Hidden progress indicator
progress = gr.HTML(
"""<div class="progress-container">Generating response...</div>""",
visible=False
)
# Chatbot component
chatbot = gr.Chatbot(
height=500,
label="Athena",
render_markdown=True,
elem_classes=["chatbot"]
)
# Input and send button row
with gr.Row():
user_input = gr.Textbox(
label="Your message",
scale=8,
autofocus=True,
placeholder="Type your message here...",
lines=2
)
send_btn = gr.Button(
value="Send",
scale=1,
variant="primary"
)
# Clear button
clear_btn = gr.Button("Clear Conversation")
# Configuration controls
gr.Markdown("### ⚙️ Model & Generation Settings")
with gr.Row():
model_choice = gr.Dropdown(
label="📱 Model",
choices=list(MODELS.keys()),
value="Athena-R3X 4B",
info="Select which Athena model to use"
)
max_length = gr.Slider(
32, 8192, value=512,
label="📝 Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
0.1, 2.0, value=0.7,
label="🎨 Creativity",
info="Higher values = more creative responses"
)
# Connect the interface components
submit_event = user_input.submit(
fn=chat_submit,
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
outputs=[user_input, chatbot, conversation_state, progress]
)
send_click = send_btn.click(
fn=chat_submit,
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
outputs=[user_input, chatbot, conversation_state, progress]
)
clear_btn.click(
fn=clear_conversation,
outputs=[chatbot, conversation_state, progress]
)
# Examples
gr.Examples(
examples=[
"What is artificial intelligence?",
"Can you explain quantum computing?",
"Write a short poem about technology",
"What are some ethical concerns about AI?"
],
inputs=user_input
)
gr.Markdown("""
### About the Thinking Tags
Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
Click on "Thinking completed" to view the model's thought process behind its answers.
""")
if __name__ == "__main__":
demo.queue()
demo.launch(debug=True)