File size: 12,668 Bytes
82452fa
 
 
 
3a04e30
c7c3bd5
a2633ea
 
 
 
 
82452fa
da8de8d
eeda09f
 
 
da8de8d
 
 
 
 
 
 
eeda09f
 
5f86ed4
 
 
a2633ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a04e30
eeda09f
a2633ea
 
 
da8de8d
a2633ea
 
 
 
 
 
 
 
 
da8de8d
a2633ea
 
 
da8de8d
a2633ea
 
da8de8d
a2633ea
 
 
 
 
 
 
 
 
 
 
 
 
 
5f86ed4
a2633ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77246c4
c7c3bd5
 
 
 
 
 
 
 
 
 
 
 
 
ed72ae8
c7c3bd5
 
 
 
 
 
 
 
a2633ea
 
 
 
 
 
 
 
ae11774
c7c3bd5
3a04e30
a2633ea
 
 
 
 
 
 
 
 
 
 
c7c3bd5
da8de8d
c7c3bd5
a2633ea
c7c3bd5
 
 
a2633ea
 
 
 
c7c3bd5
 
 
 
a2633ea
 
 
c7c3bd5
3a04e30
a2633ea
c7c3bd5
a2633ea
 
 
 
 
b0a11da
da8de8d
 
 
 
 
 
c7c3bd5
 
 
 
ed72ae8
 
 
 
c7c3bd5
ed72ae8
 
 
 
 
 
 
 
6971847
 
ed72ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3bd5
 
6971847
 
 
c7c3bd5
6971847
c7c3bd5
ed72ae8
c7c3bd5
 
 
ed72ae8
6971847
c7c3bd5
 
 
 
a2633ea
 
 
 
 
c7c3bd5
 
5f86ed4
 
 
a2633ea
5f86ed4
 
 
ed72ae8
a2633ea
5f86ed4
a2633ea
5f86ed4
 
 
 
0fa7b48
2a46096
a2633ea
 
 
 
 
 
 
 
 
5f86ed4
 
 
2a46096
 
77246c4
3a04e30
1c4e5c1
c7c3bd5
 
 
a2633ea
 
 
 
 
 
2a46096
 
 
 
 
 
 
c7c3bd5
2a46096
739239b
0fa7b48
 
 
 
 
2a46096
0fa7b48
 
 
 
2a46096
0fa7b48
82452fa
2a46096
ae11774
 
c7c3bd5
6935809
 
739239b
 
 
 
 
 
 
8c02063
739239b
 
 
 
 
 
 
 
 
a2633ea
 
0fa7b48
c7c3bd5
a2633ea
c7c3bd5
 
2a46096
0fa7b48
c7c3bd5
a2633ea
739239b
ae11774
0fa7b48
 
a2633ea
0fa7b48
1c4e5c1
2a46096
c7c3bd5
 
 
 
 
 
 
2a46096
c7c3bd5
 
 
 
 
ed72ae8
c7c3bd5
 
e6695b6
2a46096
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces
import re
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configurations
MODELS = {
    "Athena-R3X 8B": "Spestly/Athena-R3X-8B",
    "Athena-R3X 4B": "Spestly/Athena-R3X-4B",
    "Athena-R3 7B": "Spestly/Athena-R3-7B",
    "Athena-3 3B": "Spestly/Athena-3-3B",
    "Athena-3 7B": "Spestly/Athena-3-7B",
    "Athena-3 14B": "Spestly/Athena-3-14B",
    "Athena-2 1.5B": "Spestly/Athena-2-1.5B",
    "Athena-1 3B": "Spestly/Athena-1-3B",
    "Athena-1 7B": "Spestly/Athena-1-7B"
}

# Models that need the enable_thinking parameter
THINKING_ENABLED_MODELS = ["Spestly/Athena-R3X-4B"]

# Cache for loaded models
loaded_models = {}

@spaces.GPU
def load_model(model_id):
    """Load model and tokenizer once and cache them"""
    try:
        if model_id not in loaded_models:
            logger.info(f"🚀 Loading {model_id}...")
            start_time = time.time()
            
            tokenizer = AutoTokenizer.from_pretrained(model_id)
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
                
            model = AutoModelForCausalLM.from_pretrained(
                model_id,
                torch_dtype=torch.float16,
                device_map="auto",
                trust_remote_code=True
            )
            
            load_time = time.time() - start_time
            logger.info(f"✅ Model loaded in {load_time:.2f}s")
            loaded_models[model_id] = (model, tokenizer, load_time)
            
        return loaded_models[model_id]
    except Exception as e:
        logger.error(f"Error loading model {model_id}: {str(e)}")
        raise gr.Error(f"Failed to load model {model_id}. Please try another model.")

@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
    """Generate response using the specified model"""
    try:
        model, tokenizer, _ = load_model(model_id)

        # Build messages in proper chat format
        messages = []
        system_prompt = (
            "You are Athena, a helpful, harmless, and honest AI assistant. "
            "You provide clear, accurate, and concise responses to user questions. "
            "You are knowledgeable across many domains and always aim to be respectful and helpful. "
            "You are finetuned by Aayan Mishra"
        )
        messages.append({"role": "system", "content": system_prompt})

        # Add conversation history
        for msg in conversation:
            messages.append(msg)

        # Add current user message
        messages.append({"role": "user", "content": user_message})

        # Check if this model needs the enable_thinking parameter
        if model_id in THINKING_ENABLED_MODELS:
            prompt = tokenizer.apply_chat_template(
                messages, 
                tokenize=False, 
                add_generation_prompt=True,
                enable_thinking=True
            )
        else:
            prompt = tokenizer.apply_chat_template(
                messages, 
                tokenize=False, 
                add_generation_prompt=True
            )

        inputs = tokenizer(prompt, return_tensors="pt")
        device = next(model.parameters()).device
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        generation_start = time.time()
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=max_length,
                temperature=temperature,
                do_sample=True,
                top_p=0.9,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
            
        generation_time = time.time() - generation_start
        response = tokenizer.decode(
            outputs[0][inputs['input_ids'].shape[-1]:], 
            skip_special_tokens=True
        ).strip()
        
        logger.info(f"Generation time: {generation_time:.2f}s")
        return response, generation_time
        
    except Exception as e:
        logger.error(f"Error in generate_response: {str(e)}")
        raise gr.Error(f"Error generating response: {str(e)}")

def format_response_with_thinking(response):
    """Format response to handle <think></think> tags"""
    if '<think>' in response and '</think>' in response:
        pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
        match = re.search(pattern, response, re.DOTALL)
        
        if match:
            before_thinking = match.group(1).strip()
            thinking_content = match.group(3).strip()
            after_thinking = match.group(4).strip()
            
            html = f"{before_thinking}\n"
            html += f'<div class="thinking-container">'
            html += f'<button class="thinking-toggle"><div class="thinking-icon"></div> Thinking completed <span class="dropdown-arrow">▼</span></button>'
            html += f'<div class="thinking-content hidden">{thinking_content}</div>'
            html += f'</div>\n'
            html += after_thinking
            
            return html
    
    return response

def validate_input(message):
    """Validate user input"""
    if not message or not message.strip():
        raise gr.Error("Message cannot be empty")
    if len(message) > 2000:
        raise gr.Error("Message too long (max 2000 characters)")
    return message

def chat_submit(message, history, conversation_state, model_name, max_length, temperature):
    """Process a new message and update the chat history"""
    try:
        # Validate input
        message = validate_input(message)
        
        # Get model ID
        model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
        
        # Show generating message
        yield "", history + [(message, "Generating response...")], conversation_state, gr.update(visible=True)
        
        # Generate response
        response, generation_time = generate_response(
            model_id, conversation_state, message, max_length, temperature
        )
        
        # Update conversation state
        conversation_state.append({"role": "user", "content": message})
        conversation_state.append({"role": "assistant", "content": response})
        
        # Limit conversation history to last 10 exchanges
        if len(conversation_state) > 20:  # 10 user + 10 assistant messages
            conversation_state = conversation_state[-20:]
        
        # Format the response for display
        formatted_response = format_response_with_thinking(response)
        
        # Update the visible chat history
        updated_history = history[:-1] + [(message, formatted_response)]
        
        yield "", updated_history, conversation_state, gr.update(visible=False)
        
    except Exception as e:
        logger.error(f"Error in chat_submit: {str(e)}")
        error_message = f"Error: {str(e)}"
        yield error_message, history, conversation_state, gr.update(visible=False)

def clear_conversation():
    """Clear the conversation history"""
    return [], [], gr.update(visible=False)

css = """
.message {
    padding: 10px;
    margin: 5px;
    border-radius: 10px;
}
.thinking-container {
    margin: 10px 0;
}
.thinking-toggle {
    background-color: rgba(30, 30, 40, 0.8);
    border: none;
    border-radius: 25px;
    padding: 8px 15px;
    cursor: pointer;
    font-size: 0.95em;
    margin-bottom: 8px;
    color: white;
    display: flex;
    align-items: center;
    gap: 8px;
    box-shadow: 0 2px 5px rgba(0,0,0,0.2);
    transition: background-color 0.2s;
    width: auto;
    max-width: 280px;
}
.thinking-toggle:hover {
    background-color: rgba(40, 40, 50, 0.9);
}
.thinking-icon {
    width: 16px;
    height: 16px;
    border-radius: 50%;
    background-color: #6366f1;
    position: relative;
    overflow: hidden;
}
.thinking-icon::after {
    content: "";
    position: absolute;
    top: 50%;
    left: 50%;
    width: 60%;
    height: 60%;
    background-color: #a5b4fc;
    transform: translate(-50%, -50%);
    border-radius: 50%;
}
.dropdown-arrow {
    font-size: 0.7em;
    margin-left: auto;
    transition: transform 0.3s;
}
.thinking-content {
    background-color: rgba(30, 30, 40, 0.8);
    border-left: 2px solid #6366f1;
    padding: 15px;
    margin-top: 5px;
    margin-bottom: 15px;
    font-size: 0.95em;
    color: #e2e8f0;
    font-family: monospace;
    white-space: pre-wrap;
    overflow-x: auto;
    border-radius: 5px;
    line-height: 1.5;
}
.hidden {
    display: none;
}
.progress-container {
    text-align: center;
    margin: 10px 0;
    color: #6366f1;
}
"""

js = """
function setupThinkingToggle() {
    document.querySelectorAll('.thinking-toggle').forEach(button => {
        if (!button.dataset.listenerAdded) {
            button.addEventListener('click', function() {
                const content = this.nextElementSibling;
                content.classList.toggle('hidden');
                const arrow = this.querySelector('.dropdown-arrow');
                arrow.textContent = content.classList.contains('hidden') ? '▼' : '▲';
            });
            button.dataset.listenerAdded = 'true';
        }
    });
}

document.addEventListener('DOMContentLoaded', () => {
    setupThinkingToggle();
    
    const observer = new MutationObserver((mutations) => {
        setupThinkingToggle();
    });
    
    observer.observe(document.body, {
        childList: true,
        subtree: true
    });
});
"""

# Create Gradio interface
with gr.Blocks(title="Athena Playground Chat", css=css, js=js) as demo:
    gr.Markdown("# 🚀 Athena Playground Chat")
    gr.Markdown("*Powered by HuggingFace ZeroGPU*")

    # State to keep track of the conversation for the model
    conversation_state = gr.State([])
    
    # Hidden progress indicator
    progress = gr.HTML(
        """<div class="progress-container">Generating response...</div>""",
        visible=False
    )
    
    # Chatbot component
    chatbot = gr.Chatbot(
        height=500, 
        label="Athena", 
        render_markdown=True, 
        elem_classes=["chatbot"]
    )
    
    # Input and send button row
    with gr.Row():
        user_input = gr.Textbox(
            label="Your message", 
            scale=8, 
            autofocus=True,
            placeholder="Type your message here...",
            lines=2
        )
        send_btn = gr.Button(
            value="Send", 
            scale=1, 
            variant="primary"
        )

    # Clear button
    clear_btn = gr.Button("Clear Conversation")

    # Configuration controls
    gr.Markdown("### ⚙️ Model & Generation Settings")
    with gr.Row():
        model_choice = gr.Dropdown(
            label="📱 Model",
            choices=list(MODELS.keys()),
            value="Athena-R3X 4B",
            info="Select which Athena model to use"
        )
        max_length = gr.Slider(
            32, 8192, value=512, 
            label="📝 Max Tokens",
            info="Maximum number of tokens to generate"
        )
        temperature = gr.Slider(
            0.1, 2.0, value=0.7, 
            label="🎨 Creativity",
            info="Higher values = more creative responses"
        )

    # Connect the interface components
    submit_event = user_input.submit(
        fn=chat_submit,
        inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
        outputs=[user_input, chatbot, conversation_state, progress]
    )
    
    send_click = send_btn.click(
        fn=chat_submit,
        inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
        outputs=[user_input, chatbot, conversation_state, progress]
    )
    
    clear_btn.click(
        fn=clear_conversation, 
        outputs=[chatbot, conversation_state, progress]
    )

    # Examples
    gr.Examples(
        examples=[
            "What is artificial intelligence?",
            "Can you explain quantum computing?",
            "Write a short poem about technology",
            "What are some ethical concerns about AI?"
        ],
        inputs=user_input
    )

    gr.Markdown("""
    ### About the Thinking Tags
    Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
    Click on "Thinking completed" to view the model's thought process behind its answers.
    """)

if __name__ == "__main__":
    demo.queue()
    demo.launch(debug=True)