Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from huggingface_hub import space
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Full precision models for H200 70GB
|
8 |
+
MODELS = {
|
9 |
+
"Athena-R3X 8B": "Spestly/Athena-R3X-8B",
|
10 |
+
"Athena-R3X 4B": "Spestly/Athena-R3X-4B",
|
11 |
+
"Athena-R3 7B": "Spestly/Athena-R3-7B",
|
12 |
+
"Athena-3 3B": "Spestly/Athena-3-3B",
|
13 |
+
"Athena-3 7B": "Spestly/Athena-3-7B",
|
14 |
+
"Athena-3 14B": "Spestly/Athena-3-14B",
|
15 |
+
"Athena-2 1.5B": "Spestly/Athena-2-1.5B",
|
16 |
+
"Athena-1 3B": "Spestly/Athena-1-3B",
|
17 |
+
"Athena-1 7B": "Spestly/Athena-1-7B"
|
18 |
+
}
|
19 |
+
|
20 |
+
DEFAULT_MODEL = "Spestly/Athena-R3X-8B"
|
21 |
+
|
22 |
+
# GPU-accelerated function
|
23 |
+
@space.GPU
|
24 |
+
def load_model(model_name):
|
25 |
+
model_id = MODELS.get(model_name, DEFAULT_MODEL)
|
26 |
+
|
27 |
+
print(f"🚀 Loading {model_id} on H200 GPU...")
|
28 |
+
start_time = time.time()
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
31 |
+
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_id,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map="auto",
|
36 |
+
low_cpu_mem_usage=True
|
37 |
+
)
|
38 |
+
|
39 |
+
load_time = time.time() - start_time
|
40 |
+
print(f"✅ Model loaded in {load_time:.2f} seconds")
|
41 |
+
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
42 |
+
|
43 |
+
return model, tokenizer
|
44 |
+
|
45 |
+
@space.GPU
|
46 |
+
def generate_text(prompt, model_name, max_length=512, temperature=0.7):
|
47 |
+
try:
|
48 |
+
model, tokenizer = load_model(model_name)
|
49 |
+
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
51 |
+
|
52 |
+
start_time = time.time()
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_new_tokens=max_length,
|
57 |
+
temperature=temperature,
|
58 |
+
do_sample=True,
|
59 |
+
top_p=0.9
|
60 |
+
)
|
61 |
+
generation_time = time.time() - start_time
|
62 |
+
|
63 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
+
|
65 |
+
stats = f"""
|
66 |
+
⚡ Generation completed in {generation_time:.2f}s
|
67 |
+
💾 GPU Memory: {torch.cuda.memory_allocated()/1e9:.2f}GB allocated
|
68 |
+
🌡️ Temperature: {temperature}
|
69 |
+
"""
|
70 |
+
|
71 |
+
return output_text, stats
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return f"❌ Error: {str(e)}", ""
|
75 |
+
|
76 |
+
with gr.Blocks(title="Athena Playground") as demo:
|
77 |
+
gr.Markdown("""# 🚀 Athena Playground""")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column(scale=1):
|
81 |
+
model_choice = gr.Dropdown(
|
82 |
+
label="Model",
|
83 |
+
choices=list(MODELS.keys()),
|
84 |
+
value="Athena-R3X 8B"
|
85 |
+
)
|
86 |
+
max_length = gr.Slider(32, 4096, value=512, label="Max Tokens")
|
87 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, label="Creativity")
|
88 |
+
gr.Markdown("**Note:** First load may take 1-2 minutes")
|
89 |
+
submit_btn = gr.Button("Generate", variant="primary")
|
90 |
+
|
91 |
+
with gr.Column(scale=3):
|
92 |
+
prompt = gr.Textbox(label="Your Prompt", lines=8, placeholder="Type your prompt here...")
|
93 |
+
output = gr.Textbox(label="Model Output", lines=12)
|
94 |
+
stats = gr.Textbox(label="Performance Stats", lines=3)
|
95 |
+
|
96 |
+
submit_btn.click(
|
97 |
+
generate_text,
|
98 |
+
inputs=[prompt, model_choice, max_length, temperature],
|
99 |
+
outputs=[output, stats]
|
100 |
+
)
|
101 |
+
|
102 |
+
gr.Examples(
|
103 |
+
examples=[
|
104 |
+
["Explain the transformer architecture like I'm five"],
|
105 |
+
["Write a poem about AI in the style of Shakespeare"],
|
106 |
+
["Generate Python code for a convolutional neural network"]
|
107 |
+
],
|
108 |
+
inputs=prompt
|
109 |
+
)
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.launch()
|