File size: 6,089 Bytes
82452fa
 
 
 
3a04e30
82452fa
eeda09f
 
 
 
 
 
 
 
 
 
 
 
 
3a04e30
eeda09f
 
 
 
 
82452fa
3a04e30
82452fa
eeda09f
 
 
82452fa
 
eeda09f
3a04e30
 
82452fa
3a04e30
82452fa
3a04e30
 
eeda09f
 
 
 
 
 
 
3a04e30
eeda09f
 
 
 
 
 
 
 
 
 
 
77246c4
 
 
 
 
 
 
3a04e30
 
77246c4
3a04e30
eeda09f
 
 
 
3a04e30
 
 
 
eeda09f
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
 
eeda09f
3a04e30
 
 
eeda09f
 
3a04e30
 
eeda09f
 
3a04e30
eeda09f
3a04e30
 
 
 
 
 
 
 
 
eeda09f
77246c4
3a04e30
 
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
 
77246c4
3a04e30
 
77246c4
3a04e30
 
82452fa
 
 
3a04e30
82452fa
3a04e30
 
82452fa
3a04e30
 
 
 
 
 
 
 
 
 
 
 
82452fa
3a04e30
 
 
 
 
77246c4
 
 
3a04e30
 
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
82452fa
77246c4
 
3a04e30
82452fa
3a04e30
 
 
 
 
 
 
77246c4
 
 
3a04e30
82452fa
 
e6695b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces

# Model configurations
MODELS = {
    "Athena-R3X 8B": "Spestly/Athena-R3X-8B",
    "Athena-R3X 4B": "Spestly/Athena-R3X-4B",
    "Athena-R3 7B": "Spestly/Athena-R3-7B",
    "Athena-3 3B": "Spestly/Athena-3-3B",
    "Athena-3 7B": "Spestly/Athena-3-7B",
    "Athena-3 14B": "Spestly/Athena-3-14B",
    "Athena-2 1.5B": "Spestly/Athena-2-1.5B",
    "Athena-1 3B": "Spestly/Athena-1-3B",
    "Athena-1 7B": "Spestly/Athena-1-7B"
}

@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
    """Generate response using ZeroGPU - all CUDA operations happen here"""
    
    # Load model and tokenizer inside the GPU function
    print(f"πŸš€ Loading {model_id}...")
    start_time = time.time()
    
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True
    )
    
    load_time = time.time() - start_time
    print(f"βœ… Model loaded in {load_time:.2f}s")
    
    # Build conversation history
    conversation_history = []
    for user_msg, assistant_msg in conversation:
        if user_msg:
            conversation_history.append(f"User: {user_msg}")
        if assistant_msg:
            conversation_history.append(f"Athena: {assistant_msg}")
    
    # Add current user message
    conversation_history.append(f"User: {user_message}")
    conversation_history.append("Athena:")
    
    # Create prompt
    prompt = "\n".join(conversation_history)
    
    # Tokenize and generate
    inputs = tokenizer(prompt, return_tensors="pt")
    
    generation_start = time.time()
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_length,
            temperature=temperature,
            do_sample=True,
            top_p=0.9,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    
    generation_time = time.time() - generation_start
    
    # Decode response
    response = tokenizer.decode(
        outputs[0][inputs['input_ids'].shape[-1]:], 
        skip_special_tokens=True
    ).strip()
    
    return response, load_time, generation_time

def chatbot(conversation, user_message, model_name, max_length=512, temperature=0.7):
    if not user_message.strip():
        return conversation, "", "Please enter a message"
    
    if conversation is None:
        conversation = []
    
    # Get model ID
    model_id = MODELS.get(model_name, MODELS["Athena-R3X 8B"])
    
    try:
        # Add user message to conversation
        conversation.append([user_message, ""])
        
        # Generate response using ZeroGPU
        response, load_time, generation_time = generate_response(
            model_id, conversation[:-1], user_message, max_length, temperature
        )
        
        # Update the conversation with the response
        conversation[-1][1] = response
        
        stats = f"⚑ Load: {load_time:.1f}s | Gen: {generation_time:.1f}s | Model: {model_name}"
        
        return conversation, "", stats
        
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        if conversation:
            conversation[-1][1] = error_msg
        else:
            conversation = [[user_message, error_msg]]
        return conversation, "", f"❌ Error: {str(e)}"

def clear_chat():
    return [], "", ""

# CSS for better styling
css = """
#chatbot {
    height: 600px;
}
.message {
    padding: 10px;
    margin: 5px;
    border-radius: 10px;
}
"""

# Create Gradio interface
with gr.Blocks(title="Athena Playground Chat", css=css) as demo:
    gr.Markdown("# πŸš€ Athena Playground Chat")
    gr.Markdown("*Powered by HuggingFace ZeroGPU*")
    
    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                label="πŸ“± Model",
                choices=list(MODELS.keys()),
                value="Athena-R3X 8B",
                info="Select which Athena model to use"
            )
            max_length = gr.Slider(
                32, 2048, value=512, 
                label="πŸ“ Max Tokens",
                info="Maximum number of tokens to generate"
            )
            temperature = gr.Slider(
                0.1, 2.0, value=0.7, 
                label="🎨 Creativity",
                info="Higher values = more creative responses"
            )
            clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
        
        with gr.Column(scale=3):
            chat_history = gr.Chatbot(
                elem_id="chatbot",
                show_label=False,
                avatar_images=["πŸ‘€", "πŸ€–"]
            )
            user_input = gr.Textbox(
                placeholder="Ask Athena anything...",
                label="Your message",
                lines=2,
                max_lines=10
            )
            with gr.Row():
                submit_btn = gr.Button("πŸ“€ Send", variant="primary")
                stats_output = gr.Textbox(
                    label="Stats", 
                    interactive=False,
                    show_label=False,
                    placeholder="Stats will appear here..."
                )
    
    # Event handlers
    submit_btn.click(
        chatbot,
        inputs=[chat_history, user_input, model_choice, max_length, temperature],
        outputs=[chat_history, user_input, stats_output]
    )
    
    user_input.submit(
        chatbot,
        inputs=[chat_history, user_input, model_choice, max_length, temperature],
        outputs=[chat_history, user_input, stats_output]
    )
    
    clear_btn.click(
        clear_chat,
        inputs=[],
        outputs=[chat_history, user_input, stats_output]
    )

if __name__ == "__main__":
    demo.launch()