File size: 8,844 Bytes
82452fa 3a04e30 c7c3bd5 82452fa da8de8d eeda09f da8de8d eeda09f 3a04e30 eeda09f da8de8d c7c3bd5 da8de8d c7c3bd5 da8de8d c7c3bd5 da8de8d 77246c4 c7c3bd5 d4a0dae c7c3bd5 3a04e30 da8de8d c7c3bd5 da8de8d c7c3bd5 3a04e30 c7c3bd5 b0a11da da8de8d c7c3bd5 da8de8d c7c3bd5 77246c4 3a04e30 1c4e5c1 c7c3bd5 739239b c7c3bd5 82452fa c7c3bd5 6935809 739239b c7c3bd5 739239b c7c3bd5 739239b da8de8d c7c3bd5 739239b 1c4e5c1 c7c3bd5 e6695b6 90de0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces
import re
# Model configurations
MODELS = {
"Athena-R3X 8B": "Spestly/Athena-R3X-8B",
"Athena-R3X 4B": "Spestly/Athena-R3X-4B",
"Athena-R3 7B": "Spestly/Athena-R3-7B",
"Athena-3 3B": "Spestly/Athena-3-3B",
"Athena-3 7B": "Spestly/Athena-3-7B",
"Athena-3 14B": "Spestly/Athena-3-14B",
"Athena-2 1.5B": "Spestly/Athena-2-1.5B",
"Athena-1 3B": "Spestly/Athena-1-3B",
"Athena-1 7B": "Spestly/Athena-1-7B"
}
@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
"""Generate response using ZeroGPU - all CUDA operations happen here"""
print(f"π Loading {model_id}...")
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
load_time = time.time() - start_time
print(f"β
Model loaded in {load_time:.2f}s")
# Build messages in proper chat format (OpenAI-style messages)
messages = []
system_prompt = (
"You are Athena, a helpful, harmless, and honest AI assistant. "
"You provide clear, accurate, and concise responses to user questions. "
"You are knowledgeable across many domains and always aim to be respectful and helpful. "
"You are finetuned by Aayan Mishra"
)
messages.append({"role": "system", "content": system_prompt})
# Add conversation history
for msg in conversation:
messages.append(msg)
# Add current user message
messages.append({"role": "user", "content": user_message})
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
generation_start = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
do_sample=True,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generation_time = time.time() - generation_start
response = tokenizer.decode(
outputs[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
).strip()
print(f"Generation time: {generation_time:.2f}s")
return response, load_time, generation_time
def format_response_with_thinking(response):
"""Format response to handle <think></think> tags"""
# Check if response contains thinking tags
if '<think>' in response and '</think>' in response:
# Split the response into parts
pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
match = re.search(pattern, response, re.DOTALL)
if match:
before_thinking = match.group(1).strip()
thinking_content = match.group(3).strip()
after_thinking = match.group(4).strip()
# Create HTML with collapsible thinking section
html = f"{before_thinking}\n"
html += f'<div class="thinking-container">'
html += f'<button class="thinking-toggle" onclick="this.nextElementSibling.classList.toggle(\'hidden\'); this.textContent = this.textContent === \'Show reasoning\' ? \'Hide reasoning\' : \'Show reasoning\'">Show reasoning</button>'
html += f'<div class="thinking-content hidden">{thinking_content}</div>'
html += f'</div>\n'
html += after_thinking
return html
# If no thinking tags, return the original response
return response
def chat_submit(message, chat_history, conversation_state, model_name, max_length, temperature):
"""Process a new message and update the chat history"""
if not message.strip():
return "", chat_history, conversation_state
model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
try:
response, load_time, generation_time = generate_response(
model_id, conversation_state, message, max_length, temperature
)
# Update the conversation state with the raw response
conversation_state.append({"role": "user", "content": message})
conversation_state.append({"role": "assistant", "content": response})
# Format the response for display
formatted_response = format_response_with_thinking(response)
# Update the visible chat history
chat_history.append((message, formatted_response))
return "", chat_history, conversation_state
except Exception as e:
error_message = f"Error: {str(e)}"
chat_history.append((message, error_message))
return "", chat_history, conversation_state
css = """
.message {
padding: 10px;
margin: 5px;
border-radius: 10px;
}
.thinking-container {
margin: 10px 0;
}
.thinking-toggle {
background-color: #f1f1f1;
border: 1px solid #ddd;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
font-size: 0.9em;
margin-bottom: 5px;
color: #555;
}
.thinking-content {
background-color: #f9f9f9;
border-left: 3px solid #ccc;
padding: 10px;
margin-top: 5px;
font-size: 0.95em;
color: #555;
font-family: monospace;
white-space: pre-wrap;
overflow-x: auto;
}
.hidden {
display: none;
}
"""
# Add JavaScript to handle the toggle functionality
js = """
function setupThinkingToggles() {
document.querySelectorAll('.thinking-toggle').forEach(button => {
button.addEventListener('click', function() {
const content = this.nextElementSibling;
content.classList.toggle('hidden');
this.textContent = content.classList.contains('hidden') ? 'Show reasoning' : 'Hide reasoning';
});
});
}
// Run after the page loads and when the chat updates
document.addEventListener('DOMContentLoaded', setupThinkingToggles);
const observer = new MutationObserver(setupThinkingToggles);
observer.observe(document.body, { childList: true, subtree: true });
"""
theme = gr.themes.Monochrome()
with gr.Blocks(title="Athena Playground Chat", css=css, theme=theme, js=js) as demo:
gr.Markdown("# π Athena Playground Chat")
gr.Markdown("*Powered by HuggingFace ZeroGPU*")
# State to keep track of the conversation for the model
conversation_state = gr.State([])
chatbot = gr.Chatbot(height=500, label="Athena", render_markdown=True)
with gr.Row():
user_input = gr.Textbox(label="Your message", scale=8, autofocus=True, placeholder="Type your message here...")
send_btn = gr.Button(value="Send", scale=1, variant="primary")
# Configuration controls
gr.Markdown("### βοΈ Model & Generation Settings")
with gr.Row():
model_choice = gr.Dropdown(
label="π± Model",
choices=list(MODELS.keys()),
value="Athena-R3X 4B",
info="Select which Athena model to use"
)
max_length = gr.Slider(
32, 8000, value=512,
label="π Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
0.1, 2.0, value=0.7,
label="π¨ Creativity",
info="Higher values = more creative responses"
)
# Connect the interface components
submit_event = user_input.submit(
chat_submit,
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
outputs=[user_input, chatbot, conversation_state]
)
send_btn.click(
chat_submit,
inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
outputs=[user_input, chatbot, conversation_state]
)
# Add examples if desired
gr.Examples(
examples=[
"What is artificial intelligence?",
"Can you explain quantum computing?",
"Write a short poem about technology",
"What are some ethical concerns about AI?"
],
inputs=[user_input]
)
gr.Markdown("""
### About the Thinking Tags
Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
Click "Show reasoning" to see the model's thought process behind its answers.
""")
if __name__ == "__main__":
demo.launch() |