File size: 8,844 Bytes
82452fa
 
 
 
3a04e30
c7c3bd5
82452fa
da8de8d
eeda09f
 
 
da8de8d
 
 
 
 
 
 
eeda09f
 
3a04e30
eeda09f
da8de8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3bd5
da8de8d
c7c3bd5
da8de8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c3bd5
da8de8d
77246c4
c7c3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a0dae
c7c3bd5
 
 
3a04e30
da8de8d
c7c3bd5
da8de8d
c7c3bd5
 
 
 
 
 
 
 
 
 
 
 
3a04e30
c7c3bd5
 
 
b0a11da
da8de8d
 
 
 
 
 
c7c3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8de8d
 
 
 
c7c3bd5
77246c4
3a04e30
1c4e5c1
c7c3bd5
 
 
 
 
739239b
c7c3bd5
 
82452fa
c7c3bd5
6935809
 
739239b
 
 
 
 
 
 
c7c3bd5
739239b
 
 
 
 
 
 
 
 
c7c3bd5
 
 
 
 
 
 
739239b
da8de8d
c7c3bd5
 
739239b
1c4e5c1
c7c3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6695b6
90de0bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces
import re

# Model configurations
MODELS = {
    "Athena-R3X 8B": "Spestly/Athena-R3X-8B",
    "Athena-R3X 4B": "Spestly/Athena-R3X-4B",
    "Athena-R3 7B": "Spestly/Athena-R3-7B",
    "Athena-3 3B": "Spestly/Athena-3-3B",
    "Athena-3 7B": "Spestly/Athena-3-7B",
    "Athena-3 14B": "Spestly/Athena-3-14B",
    "Athena-2 1.5B": "Spestly/Athena-2-1.5B",
    "Athena-1 3B": "Spestly/Athena-1-3B",
    "Athena-1 7B": "Spestly/Athena-1-7B"
}

@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
    """Generate response using ZeroGPU - all CUDA operations happen here"""
    print(f"πŸš€ Loading {model_id}...")
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True
    )
    load_time = time.time() - start_time
    print(f"βœ… Model loaded in {load_time:.2f}s")

    # Build messages in proper chat format (OpenAI-style messages)
    messages = []
    system_prompt = (
        "You are Athena, a helpful, harmless, and honest AI assistant. "
        "You provide clear, accurate, and concise responses to user questions. "
        "You are knowledgeable across many domains and always aim to be respectful and helpful. "
        "You are finetuned by Aayan Mishra"
    )
    messages.append({"role": "system", "content": system_prompt})

    # Add conversation history
    for msg in conversation:
        messages.append(msg)

    # Add current user message
    messages.append({"role": "user", "content": user_message})

    prompt = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    inputs = tokenizer(prompt, return_tensors="pt")
    device = next(model.parameters()).device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    generation_start = time.time()
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_length,
            temperature=temperature,
            do_sample=True,
            top_p=0.9,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    generation_time = time.time() - generation_start
    response = tokenizer.decode(
        outputs[0][inputs['input_ids'].shape[-1]:], 
        skip_special_tokens=True
    ).strip()
    print(f"Generation time: {generation_time:.2f}s")
    return response, load_time, generation_time

def format_response_with_thinking(response):
    """Format response to handle <think></think> tags"""
    # Check if response contains thinking tags
    if '<think>' in response and '</think>' in response:
        # Split the response into parts
        pattern = r'(.*?)(<think>(.*?)</think>)(.*)'
        match = re.search(pattern, response, re.DOTALL)
        
        if match:
            before_thinking = match.group(1).strip()
            thinking_content = match.group(3).strip()
            after_thinking = match.group(4).strip()
            
            # Create HTML with collapsible thinking section
            html = f"{before_thinking}\n"
            html += f'<div class="thinking-container">'
            html += f'<button class="thinking-toggle" onclick="this.nextElementSibling.classList.toggle(\'hidden\'); this.textContent = this.textContent === \'Show reasoning\' ? \'Hide reasoning\' : \'Show reasoning\'">Show reasoning</button>'
            html += f'<div class="thinking-content hidden">{thinking_content}</div>'
            html += f'</div>\n'
            html += after_thinking
            
            return html
    
    # If no thinking tags, return the original response
    return response

def chat_submit(message, chat_history, conversation_state, model_name, max_length, temperature):
    """Process a new message and update the chat history"""
    if not message.strip():
        return "", chat_history, conversation_state
    
    model_id = MODELS.get(model_name, MODELS["Athena-R3X 4B"])
    try:
        response, load_time, generation_time = generate_response(
            model_id, conversation_state, message, max_length, temperature
        )
        
        # Update the conversation state with the raw response
        conversation_state.append({"role": "user", "content": message})
        conversation_state.append({"role": "assistant", "content": response})
        
        # Format the response for display
        formatted_response = format_response_with_thinking(response)
        
        # Update the visible chat history
        chat_history.append((message, formatted_response))
        
        return "", chat_history, conversation_state
    except Exception as e:
        error_message = f"Error: {str(e)}"
        chat_history.append((message, error_message))
        return "", chat_history, conversation_state

css = """
.message {
    padding: 10px;
    margin: 5px;
    border-radius: 10px;
}

.thinking-container {
    margin: 10px 0;
}

.thinking-toggle {
    background-color: #f1f1f1;
    border: 1px solid #ddd;
    border-radius: 4px;
    padding: 5px 10px;
    cursor: pointer;
    font-size: 0.9em;
    margin-bottom: 5px;
    color: #555;
}

.thinking-content {
    background-color: #f9f9f9;
    border-left: 3px solid #ccc;
    padding: 10px;
    margin-top: 5px;
    font-size: 0.95em;
    color: #555;
    font-family: monospace;
    white-space: pre-wrap;
    overflow-x: auto;
}

.hidden {
    display: none;
}
"""

# Add JavaScript to handle the toggle functionality
js = """
function setupThinkingToggles() {
    document.querySelectorAll('.thinking-toggle').forEach(button => {
        button.addEventListener('click', function() {
            const content = this.nextElementSibling;
            content.classList.toggle('hidden');
            this.textContent = content.classList.contains('hidden') ? 'Show reasoning' : 'Hide reasoning';
        });
    });
}

// Run after the page loads and when the chat updates
document.addEventListener('DOMContentLoaded', setupThinkingToggles);
const observer = new MutationObserver(setupThinkingToggles);
observer.observe(document.body, { childList: true, subtree: true });
"""

theme = gr.themes.Monochrome()

with gr.Blocks(title="Athena Playground Chat", css=css, theme=theme, js=js) as demo:
    gr.Markdown("# πŸš€ Athena Playground Chat")
    gr.Markdown("*Powered by HuggingFace ZeroGPU*")

    # State to keep track of the conversation for the model
    conversation_state = gr.State([])
    
    chatbot = gr.Chatbot(height=500, label="Athena", render_markdown=True)
    
    with gr.Row():
        user_input = gr.Textbox(label="Your message", scale=8, autofocus=True, placeholder="Type your message here...")
        send_btn = gr.Button(value="Send", scale=1, variant="primary")

    # Configuration controls
    gr.Markdown("### βš™οΈ Model & Generation Settings")
    with gr.Row():
        model_choice = gr.Dropdown(
            label="πŸ“± Model",
            choices=list(MODELS.keys()),
            value="Athena-R3X 4B",
            info="Select which Athena model to use"
        )
        max_length = gr.Slider(
            32, 8000, value=512, 
            label="πŸ“ Max Tokens",
            info="Maximum number of tokens to generate"
        )
        temperature = gr.Slider(
            0.1, 2.0, value=0.7, 
            label="🎨 Creativity",
            info="Higher values = more creative responses"
        )

    # Connect the interface components
    submit_event = user_input.submit(
        chat_submit,
        inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
        outputs=[user_input, chatbot, conversation_state]
    )
    
    send_btn.click(
        chat_submit,
        inputs=[user_input, chatbot, conversation_state, model_choice, max_length, temperature],
        outputs=[user_input, chatbot, conversation_state]
    )

    # Add examples if desired
    gr.Examples(
        examples=[
            "What is artificial intelligence?",
            "Can you explain quantum computing?",
            "Write a short poem about technology",
            "What are some ethical concerns about AI?"
        ],
        inputs=[user_input]
    )

    gr.Markdown("""
    ### About the Thinking Tags
    Some Athena models (particularly R3X series) include reasoning in `<think></think>` tags.
    Click "Show reasoning" to see the model's thought process behind its answers.
    """)

if __name__ == "__main__":
    demo.launch()