File size: 4,268 Bytes
950f5a9
 
 
 
 
 
 
 
 
45cfd30
 
 
 
 
 
 
950f5a9
 
 
 
45cfd30
950f5a9
 
 
45cfd30
950f5a9
45cfd30
950f5a9
45cfd30
 
 
 
 
 
 
 
 
 
950f5a9
 
45cfd30
 
 
950f5a9
 
45cfd30
950f5a9
 
45cfd30
950f5a9
 
 
45cfd30
 
 
 
 
950f5a9
45cfd30
950f5a9
45cfd30
 
 
 
 
950f5a9
45cfd30
950f5a9
 
 
 
 
 
 
45cfd30
 
 
950f5a9
 
 
45cfd30
950f5a9
 
 
 
45cfd30
 
950f5a9
45cfd30
950f5a9
 
 
 
 
 
 
45cfd30
950f5a9
45cfd30
950f5a9
45cfd30
950f5a9
 
 
 
 
45cfd30
950f5a9
45cfd30
950f5a9
 
 
 
 
45cfd30
950f5a9
45cfd30
950f5a9
45cfd30
950f5a9
 
 
 
 
45cfd30
 
950f5a9
45cfd30
950f5a9
 
 
45cfd30
950f5a9
45cfd30
 
950f5a9
45cfd30
 
 
 
 
 
 
 
 
 
950f5a9
 
45cfd30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "Sunset in Hawaii, cold color palette, muted colors, detailed, 8k",
    "A dog catching a baseball",
    "Vanilla ice cream with hot fudge",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Generation with Stable Diffusion
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
                info="Do not draw this"
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                    info="how much the text prompt influences the result[0 - 10]"
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                    info="to denoise the image"
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()