Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
pipe =
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
|
|
23 |
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image
|
52 |
-
|
53 |
|
54 |
examples = [
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
]
|
59 |
|
60 |
-
css
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
|
|
|
|
|
|
|
|
|
|
67 |
with gr.Blocks(css=css) as demo:
|
|
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown("
|
70 |
-
|
|
|
|
|
|
|
71 |
with gr.Row():
|
|
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
74 |
show_label=False,
|
@@ -76,19 +72,21 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0
|
81 |
-
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
-
visible=
|
|
|
90 |
)
|
91 |
-
|
92 |
seed = gr.Slider(
|
93 |
label="Seed",
|
94 |
minimum=0,
|
@@ -96,59 +94,56 @@ with gr.Blocks(css=css) as demo:
|
|
96 |
step=1,
|
97 |
value=0,
|
98 |
)
|
99 |
-
|
100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
with gr.Row():
|
|
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
-
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
-
|
119 |
with gr.Row():
|
|
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=0.0,
|
|
|
126 |
)
|
127 |
-
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=2,
|
|
|
134 |
)
|
135 |
-
|
136 |
-
gr.Examples(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
+
torch.cuda.max_memory_allocated(device=device)
|
11 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
+
pipe.enable_xformers_memory_efficient_attention()
|
13 |
+
pipe = pipe.to(device)
|
14 |
+
else:
|
15 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
+
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
+
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
+
|
28 |
image = pipe(
|
29 |
+
prompt = prompt,
|
30 |
+
negative_prompt = negative_prompt,
|
31 |
+
guidance_scale = guidance_scale,
|
32 |
+
num_inference_steps = num_inference_steps,
|
33 |
+
width = width,
|
34 |
+
height = height,
|
35 |
+
generator = generator
|
36 |
+
).images[0]
|
37 |
+
|
38 |
+
return image
|
|
|
39 |
|
40 |
examples = [
|
41 |
+
"Sunset in Hawaii, cold color palette, muted colors, detailed, 8k",
|
42 |
+
"A dog catching a baseball",
|
43 |
+
"Vanilla ice cream with hot fudge",
|
44 |
]
|
45 |
|
46 |
+
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
+
max-width: 520px;
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
+
if torch.cuda.is_available():
|
54 |
+
power_device = "GPU"
|
55 |
+
else:
|
56 |
+
power_device = "CPU"
|
57 |
+
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
+
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
+
gr.Markdown(f"""
|
62 |
+
# Text-to-Image Generation with Stable Diffusion
|
63 |
+
Currently running on {power_device}.
|
64 |
+
""")
|
65 |
+
|
66 |
with gr.Row():
|
67 |
+
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
+
|
76 |
+
run_button = gr.Button("Run", scale=0)
|
77 |
+
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
+
|
82 |
negative_prompt = gr.Text(
|
83 |
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
placeholder="Enter a negative prompt",
|
86 |
+
visible=True,
|
87 |
+
info="Do not draw this"
|
88 |
)
|
89 |
+
|
90 |
seed = gr.Slider(
|
91 |
label="Seed",
|
92 |
minimum=0,
|
|
|
94 |
step=1,
|
95 |
value=0,
|
96 |
)
|
97 |
+
|
98 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
99 |
+
|
100 |
with gr.Row():
|
101 |
+
|
102 |
width = gr.Slider(
|
103 |
label="Width",
|
104 |
minimum=256,
|
105 |
maximum=MAX_IMAGE_SIZE,
|
106 |
step=32,
|
107 |
+
value=512,
|
108 |
)
|
109 |
+
|
110 |
height = gr.Slider(
|
111 |
label="Height",
|
112 |
minimum=256,
|
113 |
maximum=MAX_IMAGE_SIZE,
|
114 |
step=32,
|
115 |
+
value=512,
|
116 |
)
|
117 |
+
|
118 |
with gr.Row():
|
119 |
+
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
+
value=0.0,
|
126 |
+
info="how much the text prompt influences the result[0 - 10]"
|
127 |
)
|
128 |
+
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
132 |
+
maximum=12,
|
133 |
step=1,
|
134 |
+
value=2,
|
135 |
+
info="to denoise the image"
|
136 |
)
|
137 |
+
|
138 |
+
gr.Examples(
|
139 |
+
examples = examples,
|
140 |
+
inputs = [prompt]
|
141 |
+
)
|
142 |
+
|
143 |
+
run_button.click(
|
144 |
+
fn = infer,
|
145 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
146 |
+
outputs = [result]
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
|
149 |
+
demo.queue().launch()
|
|