Sourikta commited on
Commit
45cfd30
·
verified ·
1 Parent(s): 0eb0e94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -74
app.py CHANGED
@@ -1,74 +1,70 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
 
 
 
 
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
@@ -76,19 +72,21 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
 
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,59 +94,56 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
  with gr.Row():
 
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
 
126
  )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
 
134
  )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
4
  from diffusers import DiffusionPipeline
5
  import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
8
 
9
  if torch.cuda.is_available():
10
+ torch.cuda.max_memory_allocated(device=device)
11
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
+ pipe.enable_xformers_memory_efficient_attention()
13
+ pipe = pipe.to(device)
14
+ else:
15
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
+ pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
+
26
  generator = torch.Generator().manual_seed(seed)
27
+
28
  image = pipe(
29
+ prompt = prompt,
30
+ negative_prompt = negative_prompt,
31
+ guidance_scale = guidance_scale,
32
+ num_inference_steps = num_inference_steps,
33
+ width = width,
34
+ height = height,
35
+ generator = generator
36
+ ).images[0]
37
+
38
+ return image
 
39
 
40
  examples = [
41
+ "Sunset in Hawaii, cold color palette, muted colors, detailed, 8k",
42
+ "A dog catching a baseball",
43
+ "Vanilla ice cream with hot fudge",
44
  ]
45
 
46
+ css="""
47
  #col-container {
48
  margin: 0 auto;
49
+ max-width: 520px;
50
  }
51
  """
52
 
53
+ if torch.cuda.is_available():
54
+ power_device = "GPU"
55
+ else:
56
+ power_device = "CPU"
57
+
58
  with gr.Blocks(css=css) as demo:
59
+
60
  with gr.Column(elem_id="col-container"):
61
+ gr.Markdown(f"""
62
+ # Text-to-Image Generation with Stable Diffusion
63
+ Currently running on {power_device}.
64
+ """)
65
+
66
  with gr.Row():
67
+
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
 
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
+
76
+ run_button = gr.Button("Run", scale=0)
77
+
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
+
82
  negative_prompt = gr.Text(
83
  label="Negative prompt",
84
  max_lines=1,
85
  placeholder="Enter a negative prompt",
86
+ visible=True,
87
+ info="Do not draw this"
88
  )
89
+
90
  seed = gr.Slider(
91
  label="Seed",
92
  minimum=0,
 
94
  step=1,
95
  value=0,
96
  )
97
+
98
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
99
+
100
  with gr.Row():
101
+
102
  width = gr.Slider(
103
  label="Width",
104
  minimum=256,
105
  maximum=MAX_IMAGE_SIZE,
106
  step=32,
107
+ value=512,
108
  )
109
+
110
  height = gr.Slider(
111
  label="Height",
112
  minimum=256,
113
  maximum=MAX_IMAGE_SIZE,
114
  step=32,
115
+ value=512,
116
  )
117
+
118
  with gr.Row():
119
+
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
+ value=0.0,
126
+ info="how much the text prompt influences the result[0 - 10]"
127
  )
128
+
129
  num_inference_steps = gr.Slider(
130
  label="Number of inference steps",
131
  minimum=1,
132
+ maximum=12,
133
  step=1,
134
+ value=2,
135
+ info="to denoise the image"
136
  )
137
+
138
+ gr.Examples(
139
+ examples = examples,
140
+ inputs = [prompt]
141
+ )
142
+
143
+ run_button.click(
144
+ fn = infer,
145
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
146
+ outputs = [result]
 
 
 
 
 
 
147
  )
148
 
149
+ demo.queue().launch()