Sonu313131's picture
Update app.py
0e37d38 verified
raw
history blame
5.14 kB
import os
import gradio as gr
import requests
import pandas as pd
import asyncio
import json
from huggingface_hub import login
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
# --- Hugging Face Login ---
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
# --- Define Tools ---
search_tool = DuckDuckGoSearchTool()
# --- Main Async Function with Progress Logs ---
async def run_and_submit_all(profile: gr.OAuthProfile | None):
log_output = ""
try:
agent = CodeAgent(
tools=[search_tool],
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
max_steps=5,
verbosity_level=2
)
except Exception as e:
yield f"❌ Agent Initialization Error: {e}", None, log_output
return
space_id = os.getenv("SPACE_ID", "unknown")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(QUESTIONS_URL, timeout=15)
response.raise_for_status()
questions = response.json()
if not questions:
yield "⚠️ No questions received.", None, log_output
return
except Exception as e:
yield f"❌ Failed to fetch questions: {e}", None, log_output
return
answers = []
logs = []
loop = asyncio.get_running_loop()
for item in questions:
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
log_output += f"πŸ” Solving Task ID: {task_id}...\n"
yield None, None, log_output # Live update
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n"
)
full_prompt = system_prompt + f"Question: {question.strip()}"
try:
result = await loop.run_in_executor(None, lambda: agent(full_prompt))
if isinstance(result, dict) and "final_answer" in result:
final_answer = str(result["final_answer"]).strip()
elif isinstance(result, str):
if "FINAL ANSWER:" in result:
final_answer = result.split("FINAL ANSWER:")[-1].strip()
else:
final_answer = result.strip()
else:
final_answer = str(result).strip()
except Exception as e:
final_answer = f"AGENT ERROR: {e}"
print(f"[ERROR] Task {task_id} failed: {e}")
answers.append({"task_id": task_id, "model_answer": final_answer})
logs.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})
log_output += f"βœ… Done: {task_id} β€” Answer: {final_answer[:60]}\n"
yield None, None, log_output # Live update
valid_answers = [a for a in answers if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]
if not valid_answers:
yield "❌ Agent produced no valid answers.", pd.DataFrame(logs), log_output
return
submission = {
"username": profile.username if profile else "unknown",
"agent_code": agent_code,
"answers": valid_answers
}
print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2))
try:
resp = requests.post(SUBMIT_URL, json=submission, timeout=60)
resp.raise_for_status()
result_data = resp.json()
summary = (
f"βœ… Submission Successful\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
f"Message: {result_data.get('message', 'No message.')}"
)
yield summary, pd.DataFrame(logs), log_output
except Exception as e:
yield f"❌ Submission failed: {e}", pd.DataFrame(logs), log_output
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# 🧠 GAIA Agent Evaluation Interface")
gr.Markdown("""
- Log in with your Hugging Face account.
- Click the button below to run the agent and submit the answers.
- Watch the log to see which question is being solved in real-time.
""")
gr.LoginButton()
run_button = gr.Button("πŸš€ Run Evaluation & Submit")
status = gr.Textbox(label="Final Status", lines=6)
table = gr.DataFrame(label="Answer Log")
progress_log = gr.Textbox(label="Live Progress Log", lines=10, interactive=False)
run_button.click(fn=run_and_submit_all, outputs=[status, table, progress_log])
# --- Launch ---
if __name__ == "__main__":
print("Launching Agent Space...")
demo.launch(debug=True)