|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import asyncio |
|
import json |
|
from huggingface_hub import login |
|
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions" |
|
SUBMIT_URL = f"{DEFAULT_API_URL}/submit" |
|
|
|
|
|
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) |
|
|
|
|
|
search_tool = DuckDuckGoSearchTool() |
|
|
|
|
|
async def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
log_output = "" |
|
try: |
|
agent = CodeAgent( |
|
tools=[search_tool], |
|
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"), |
|
max_steps=5, |
|
verbosity_level=2 |
|
) |
|
except Exception as e: |
|
yield f"β Agent Initialization Error: {e}", None, log_output |
|
return |
|
|
|
space_id = os.getenv("SPACE_ID", "unknown") |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
try: |
|
response = requests.get(QUESTIONS_URL, timeout=15) |
|
response.raise_for_status() |
|
questions = response.json() |
|
if not questions: |
|
yield "β οΈ No questions received.", None, log_output |
|
return |
|
except Exception as e: |
|
yield f"β Failed to fetch questions: {e}", None, log_output |
|
return |
|
|
|
answers = [] |
|
logs = [] |
|
loop = asyncio.get_running_loop() |
|
|
|
for item in questions: |
|
task_id = item.get("task_id") |
|
question = item.get("question") |
|
if not task_id or not question: |
|
continue |
|
|
|
log_output += f"π Solving Task ID: {task_id}...\n" |
|
yield None, None, log_output |
|
|
|
system_prompt = ( |
|
"You are a general AI assistant. I will ask you a question. " |
|
"Report your thoughts, and finish your answer with the following template: " |
|
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n" |
|
) |
|
full_prompt = system_prompt + f"Question: {question.strip()}" |
|
|
|
try: |
|
result = await loop.run_in_executor(None, lambda: agent(full_prompt)) |
|
|
|
if isinstance(result, dict) and "final_answer" in result: |
|
final_answer = str(result["final_answer"]).strip() |
|
elif isinstance(result, str): |
|
if "FINAL ANSWER:" in result: |
|
final_answer = result.split("FINAL ANSWER:")[-1].strip() |
|
else: |
|
final_answer = result.strip() |
|
else: |
|
final_answer = str(result).strip() |
|
|
|
except Exception as e: |
|
final_answer = f"AGENT ERROR: {e}" |
|
print(f"[ERROR] Task {task_id} failed: {e}") |
|
|
|
answers.append({"task_id": task_id, "model_answer": final_answer}) |
|
logs.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer}) |
|
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n" |
|
yield None, None, log_output |
|
|
|
valid_answers = [a for a in answers if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)] |
|
|
|
if not valid_answers: |
|
yield "β Agent produced no valid answers.", pd.DataFrame(logs), log_output |
|
return |
|
|
|
submission = { |
|
"username": profile.username if profile else "unknown", |
|
"agent_code": agent_code, |
|
"answers": valid_answers |
|
} |
|
|
|
print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2)) |
|
|
|
try: |
|
resp = requests.post(SUBMIT_URL, json=submission, timeout=60) |
|
resp.raise_for_status() |
|
result_data = resp.json() |
|
|
|
summary = ( |
|
f"β
Submission Successful\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n" |
|
f"Message: {result_data.get('message', 'No message.')}" |
|
) |
|
yield summary, pd.DataFrame(logs), log_output |
|
|
|
except Exception as e: |
|
yield f"β Submission failed: {e}", pd.DataFrame(logs), log_output |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π§ GAIA Agent Evaluation Interface") |
|
gr.Markdown(""" |
|
- Log in with your Hugging Face account. |
|
- Click the button below to run the agent and submit the answers. |
|
- Watch the log to see which question is being solved in real-time. |
|
""") |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("π Run Evaluation & Submit") |
|
status = gr.Textbox(label="Final Status", lines=6) |
|
table = gr.DataFrame(label="Answer Log") |
|
progress_log = gr.Textbox(label="Live Progress Log", lines=10, interactive=False) |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status, table, progress_log]) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Launching Agent Space...") |
|
demo.launch(debug=True) |
|
|