import os import gradio as gr import requests import pandas as pd import asyncio import json from huggingface_hub import login from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" QUESTIONS_URL = f"{DEFAULT_API_URL}/questions" SUBMIT_URL = f"{DEFAULT_API_URL}/submit" # --- Hugging Face Login --- login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) # --- Define Tools --- search_tool = DuckDuckGoSearchTool() # --- Main Async Function with Progress Logs --- async def run_and_submit_all(profile: gr.OAuthProfile | None): log_output = "" try: agent = CodeAgent( tools=[search_tool], model=InferenceClientModel(model="mistralai/Magistral-Small-2506"), max_steps=5, verbosity_level=2 ) except Exception as e: yield f"❌ Agent Initialization Error: {e}", None, log_output return space_id = os.getenv("SPACE_ID", "unknown") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(QUESTIONS_URL, timeout=15) response.raise_for_status() questions = response.json() if not questions: yield "⚠️ No questions received.", None, log_output return except Exception as e: yield f"❌ Failed to fetch questions: {e}", None, log_output return answers = [] logs = [] loop = asyncio.get_running_loop() for item in questions: task_id = item.get("task_id") question = item.get("question") if not task_id or not question: continue log_output += f"🔍 Solving Task ID: {task_id}...\n" yield None, None, log_output # Live update system_prompt = ( "You are a general AI assistant. I will ask you a question. " "Report your thoughts, and finish your answer with the following template: " "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n" ) full_prompt = system_prompt + f"Question: {question.strip()}" try: result = await loop.run_in_executor(None, lambda: agent(full_prompt)) if isinstance(result, dict) and "final_answer" in result: final_answer = str(result["final_answer"]).strip() elif isinstance(result, str): if "FINAL ANSWER:" in result: final_answer = result.split("FINAL ANSWER:")[-1].strip() else: final_answer = result.strip() else: final_answer = str(result).strip() except Exception as e: final_answer = f"AGENT ERROR: {e}" print(f"[ERROR] Task {task_id} failed: {e}") answers.append({"task_id": task_id, "model_answer": final_answer}) logs.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer}) log_output += f"✅ Done: {task_id} — Answer: {final_answer[:60]}\n" yield None, None, log_output # Live update valid_answers = [a for a in answers if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)] if not valid_answers: yield "❌ Agent produced no valid answers.", pd.DataFrame(logs), log_output return submission = { "username": profile.username if profile else "unknown", "agent_code": agent_code, "answers": valid_answers } print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2)) try: resp = requests.post(SUBMIT_URL, json=submission, timeout=60) resp.raise_for_status() result_data = resp.json() summary = ( f"✅ Submission Successful\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n" f"Message: {result_data.get('message', 'No message.')}" ) yield summary, pd.DataFrame(logs), log_output except Exception as e: yield f"❌ Submission failed: {e}", pd.DataFrame(logs), log_output # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("# 🧠 GAIA Agent Evaluation Interface") gr.Markdown(""" - Log in with your Hugging Face account. - Click the button below to run the agent and submit the answers. - Watch the log to see which question is being solved in real-time. """) gr.LoginButton() run_button = gr.Button("🚀 Run Evaluation & Submit") status = gr.Textbox(label="Final Status", lines=6) table = gr.DataFrame(label="Answer Log") progress_log = gr.Textbox(label="Live Progress Log", lines=10, interactive=False) run_button.click(fn=run_and_submit_all, outputs=[status, table, progress_log]) # --- Launch --- if __name__ == "__main__": print("Launching Agent Space...") demo.launch(debug=True)