|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "mergekit-community/Anti-Qwen2.5-Coder-0.5B-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = model.to(device) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [f"System: {system_message}"] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append(f"User: {val[0]}") |
|
if val[1]: |
|
messages.append(f"Assistant: {val[1]}") |
|
|
|
messages.append(f"User: {message}") |
|
context = "\n".join(messages) |
|
|
|
|
|
input_ids = tokenizer(context, return_tensors="pt", truncation=True, max_length=2048).input_ids.to(device) |
|
|
|
|
|
output_ids = model.generate( |
|
input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|