Austin Stockbridge commited on
Commit
cd166f9
·
verified ·
1 Parent(s): 20f8924

No more Inference Client bullshit

Browse files
Files changed (1) hide show
  1. app.py +28 -23
app.py CHANGED
@@ -1,11 +1,15 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("mergekit-community/Anti-Qwen2.5-Coder-0.5B-Instruct")
8
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,34 +19,36 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
19
 
20
  for val in history:
21
  if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +65,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer locally
6
+ model_name = "mergekit-community/Anti-Qwen2.5-Coder-0.5B-Instruct"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
9
 
10
+ # Ensure the model runs on GPU if available
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model = model.to(device)
13
 
14
  def respond(
15
  message,
 
19
  temperature,
20
  top_p,
21
  ):
22
+ # Prepare the conversation history for the model
23
+ messages = [f"System: {system_message}"]
24
 
25
  for val in history:
26
  if val[0]:
27
+ messages.append(f"User: {val[0]}")
28
  if val[1]:
29
+ messages.append(f"Assistant: {val[1]}")
30
 
31
+ messages.append(f"User: {message}")
32
+ context = "\n".join(messages)
33
 
34
+ # Tokenize input
35
+ input_ids = tokenizer(context, return_tensors="pt", truncation=True, max_length=2048).input_ids.to(device)
36
 
37
+ # Generate response
38
+ output_ids = model.generate(
39
+ input_ids,
40
+ max_new_tokens=max_tokens,
41
  temperature=temperature,
42
  top_p=top_p,
43
+ do_sample=True,
44
+ pad_token_id=tokenizer.eos_token_id,
45
+ )
46
 
47
+ # Decode and yield response
48
+ response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
49
+ yield response
50
 
51
+ # Gradio interface setup
 
 
 
52
  demo = gr.ChatInterface(
53
  respond,
54
  additional_inputs=[
 
65
  ],
66
  )
67
 
 
68
  if __name__ == "__main__":
69
  demo.launch()