|
import streamlit as st |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from io import BytesIO |
|
from ultralytics import YOLO |
|
import os |
|
import tempfile |
|
import base64 |
|
import requests |
|
from datetime import datetime |
|
from gtts import gTTS |
|
from googletrans import Translator |
|
import google.generativeai as genai |
|
|
|
|
|
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY") |
|
genai.configure(api_key=GEMINI_API_KEY) |
|
|
|
|
|
yolo_model = YOLO("models/best.pt") |
|
|
|
|
|
if "conversation_history" not in st.session_state: |
|
st.session_state.conversation_history = {} |
|
|
|
|
|
def preprocess_image(image, target_size=(224, 224)): |
|
"""Resize image for AI models.""" |
|
image = Image.fromarray(image) |
|
image = image.resize(target_size) |
|
return image |
|
|
|
|
|
def generate_gemini_response(disease_list, user_context="", conversation_history=None): |
|
"""Generate a structured diagnosis using Gemini API, considering conversation history.""" |
|
try: |
|
model = genai.GenerativeModel("gemini-1.5-pro") |
|
|
|
|
|
prompt = f""" |
|
You are an expert plant pathologist. The detected crop diseases are: {', '.join(disease_list)}. |
|
|
|
User's context or question: {user_context if user_context else "Provide a general analysis"} |
|
""" |
|
|
|
|
|
if conversation_history: |
|
history_text = "\n\nPrevious conversation:\n" |
|
for entry in conversation_history: |
|
history_text += f"- User: {entry['question']}\n- AI: {entry['response']}\n" |
|
prompt += history_text |
|
|
|
|
|
prompt += """ |
|
Provide a detailed diagnosis including: |
|
1. Symptoms |
|
2. Causes and risk factors |
|
3. Impact on crops |
|
4. Treatment options (short-term & long-term) |
|
5. Prevention strategies |
|
""" |
|
|
|
response = model.generate_content(prompt) |
|
return response.text if response else "No response from Gemini." |
|
except Exception as e: |
|
return f"Error connecting to Gemini API: {str(e)}" |
|
|
|
|
|
def inference(image): |
|
"""Detect crop diseases in the given image.""" |
|
results = yolo_model(image, conf=0.4) |
|
infer = np.zeros(image.shape, dtype=np.uint8) |
|
detected_classes = [] |
|
class_names = {} |
|
|
|
for r in results: |
|
infer = r.plot() |
|
class_names = r.names |
|
detected_classes = r.boxes.cls.tolist() |
|
|
|
return infer, detected_classes, class_names |
|
|
|
|
|
def text_to_speech(text, language="en"): |
|
"""Convert text to speech using gTTS.""" |
|
try: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: |
|
tts = gTTS(text=text, lang=language, slow=False) |
|
tts.save(temp_audio.name) |
|
|
|
with open(temp_audio.name, "rb") as audio_file: |
|
audio_bytes = audio_file.read() |
|
|
|
os.unlink(temp_audio.name) |
|
return audio_bytes |
|
except Exception as e: |
|
st.error(f"Error generating speech: {str(e)}") |
|
return None |
|
|
|
|
|
st.title("π± AI-Powered Crop Disease Detection & Diagnosis π¬") |
|
|
|
|
|
with st.sidebar: |
|
st.header("Settings") |
|
|
|
|
|
selected_model = st.selectbox("Choose Model", ["Gemini", "GPT-4", "Claude", "Llama 3", "Mistral"], help="This app always uses Gemini.") |
|
|
|
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4) |
|
|
|
|
|
tts_enabled = st.checkbox("Enable Text-to-Speech", value=True) |
|
language = st.selectbox("Speech Language", options=["en", "es", "fr", "de"], format_func=lambda x: { |
|
"en": "English", |
|
"es": "Spanish", |
|
"fr": "French", |
|
"de": "German" |
|
}[x]) |
|
|
|
if st.button("Clear Conversation History"): |
|
st.session_state.conversation_history = {} |
|
st.success("Conversation history cleared!") |
|
|
|
|
|
st.subheader("π Provide Initial Context or Ask a Question") |
|
user_context = st.text_area("Enter any details, symptoms, or questions about the plant's condition.", placeholder="Example: My tomato plant leaves are turning yellow. Is it a disease or a nutrient deficiency?") |
|
|
|
|
|
uploaded_file = st.file_uploader("π€ Upload a plant image", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file: |
|
file_id = uploaded_file.name |
|
|
|
|
|
if file_id not in st.session_state.conversation_history: |
|
st.session_state.conversation_history[file_id] = [] |
|
|
|
|
|
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) |
|
img = cv2.imdecode(file_bytes, 1) |
|
|
|
|
|
processed_image, detected_classes, class_names = inference(img) |
|
|
|
|
|
st.image(processed_image, caption="π Detected Diseases", use_column_width=True) |
|
|
|
if detected_classes: |
|
detected_disease_names = [class_names[cls] for cls in detected_classes] |
|
st.write(f"β
**Detected Diseases:** {', '.join(detected_disease_names)}") |
|
|
|
|
|
st.subheader("π AI Diagnosis") |
|
with st.spinner("Generating diagnosis... π"): |
|
diagnosis = generate_gemini_response(detected_disease_names, user_context, st.session_state.conversation_history[file_id]) |
|
|
|
|
|
st.session_state.conversation_history[file_id].append({"question": user_context, "response": diagnosis}) |
|
|
|
|
|
st.write(diagnosis) |
|
|
|
|
|
if st.session_state.conversation_history[file_id]: |
|
st.subheader("ποΈ Conversation History") |
|
for i, entry in enumerate(st.session_state.conversation_history[file_id]): |
|
with st.expander(f"Q{i+1}: {entry['question'][:50]}..."): |
|
st.write("**User:**", entry["question"]) |
|
st.write("**AI:**", entry["response"]) |
|
|
|
|
|
if tts_enabled: |
|
if st.button("π Listen to Diagnosis"): |
|
with st.spinner("Generating audio... π΅"): |
|
audio_bytes = text_to_speech(diagnosis, language) |
|
if audio_bytes: |
|
st.audio(audio_bytes, format="audio/mp3") |
|
|
|
else: |
|
st.write("β No crop disease detected.") |
|
|
|
|
|
st.markdown(""" |
|
--- |
|
### How to Use: |
|
1. Upload an image of a plant leaf with suspected disease. |
|
2. Provide context (optional) about symptoms or concerns. |
|
3. The system detects the disease using AI. |
|
4. Gemini generates a diagnosis with symptoms and treatments. |
|
5. Ask follow-up questions, and the AI will remember previous responses. |
|
6. Optionally, listen to the AI-generated diagnosis. |
|
""") |
|
|