File size: 7,189 Bytes
e5ecd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
import os
import tempfile
import base64
import requests
from datetime import datetime
from gtts import gTTS
from googletrans import Translator
import google.generativeai as genai  # Import Gemini API

# Configure Google Gemini API
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

# Load YOLO model for crop disease detection
yolo_model = YOLO("models/best.pt")

# Initialize conversation history if not set
if "conversation_history" not in st.session_state:
    st.session_state.conversation_history = {}

# Function to preprocess images
def preprocess_image(image, target_size=(224, 224)):
    """Resize image for AI models."""
    image = Image.fromarray(image)
    image = image.resize(target_size)
    return image

# Generate response from Gemini AI with history
def generate_gemini_response(disease_list, user_context="", conversation_history=None):
    """Generate a structured diagnosis using Gemini API, considering conversation history."""
    try:
        model = genai.GenerativeModel("gemini-1.5-pro")

        # Start with detected diseases
        prompt = f"""
        You are an expert plant pathologist. The detected crop diseases are: {', '.join(disease_list)}.
        
        User's context or question: {user_context if user_context else "Provide a general analysis"}
        """

        # Add past conversation history for better continuity
        if conversation_history:
            history_text = "\n\nPrevious conversation:\n"
            for entry in conversation_history:
                history_text += f"- User: {entry['question']}\n- AI: {entry['response']}\n"
            prompt += history_text

        # Ask Gemini for a structured diagnosis
        prompt += """
        Provide a detailed diagnosis including:
        1. Symptoms
        2. Causes and risk factors
        3. Impact on crops
        4. Treatment options (short-term & long-term)
        5. Prevention strategies
        """

        response = model.generate_content(prompt)
        return response.text if response else "No response from Gemini."
    except Exception as e:
        return f"Error connecting to Gemini API: {str(e)}"

# Perform inference using YOLO
def inference(image):
    """Detect crop diseases in the given image."""
    results = yolo_model(image, conf=0.4)
    infer = np.zeros(image.shape, dtype=np.uint8)
    detected_classes = []
    class_names = {}

    for r in results:
        infer = r.plot()
        class_names = r.names
        detected_classes = r.boxes.cls.tolist()

    return infer, detected_classes, class_names

# Convert text to speech
def text_to_speech(text, language="en"):
    """Convert text to speech using gTTS."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
            tts = gTTS(text=text, lang=language, slow=False)
            tts.save(temp_audio.name)

            with open(temp_audio.name, "rb") as audio_file:
                audio_bytes = audio_file.read()

            os.unlink(temp_audio.name)
            return audio_bytes
    except Exception as e:
        st.error(f"Error generating speech: {str(e)}")
        return None

# Initialize Streamlit UI
st.title("🌱 AI-Powered Crop Disease Detection & Diagnosis πŸ”¬")

# Sidebar settings
with st.sidebar:
    st.header("Settings")

    # Fake model selection (Still uses Gemini)
    selected_model = st.selectbox("Choose Model", ["Gemini", "GPT-4", "Claude", "Llama 3", "Mistral"], help="This app always uses Gemini.")

    confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
    
    # Text-to-Speech Settings
    tts_enabled = st.checkbox("Enable Text-to-Speech", value=True)
    language = st.selectbox("Speech Language", options=["en", "es", "fr", "de"], format_func=lambda x: {
        "en": "English",
        "es": "Spanish",
        "fr": "French",
        "de": "German"
    }[x])

    if st.button("Clear Conversation History"):
        st.session_state.conversation_history = {}
        st.success("Conversation history cleared!")

# User context input
st.subheader("πŸ“ Provide Initial Context or Ask a Question")
user_context = st.text_area("Enter any details, symptoms, or questions about the plant's condition.", placeholder="Example: My tomato plant leaves are turning yellow. Is it a disease or a nutrient deficiency?")

# Upload an image
uploaded_file = st.file_uploader("πŸ“€ Upload a plant image", type=["jpg", "jpeg", "png"])

if uploaded_file:
    file_id = uploaded_file.name

    # Initialize conversation history for this image if not set
    if file_id not in st.session_state.conversation_history:
        st.session_state.conversation_history[file_id] = []

    # Convert file to image
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    img = cv2.imdecode(file_bytes, 1)

    # Perform inference
    processed_image, detected_classes, class_names = inference(img)

    # Display processed image with detected diseases
    st.image(processed_image, caption="πŸ” Detected Diseases", use_column_width=True)

    if detected_classes:
        detected_disease_names = [class_names[cls] for cls in detected_classes]
        st.write(f"βœ… **Detected Diseases:** {', '.join(detected_disease_names)}")

        # AI-generated diagnosis from Gemini
        st.subheader("πŸ“‹ AI Diagnosis")
        with st.spinner("Generating diagnosis... πŸ”„"):
            diagnosis = generate_gemini_response(detected_disease_names, user_context, st.session_state.conversation_history[file_id])

        # Save response to history
        st.session_state.conversation_history[file_id].append({"question": user_context, "response": diagnosis})

        # Display the diagnosis
        st.write(diagnosis)

        # Show past conversation history
        if st.session_state.conversation_history[file_id]:
            st.subheader("πŸ—‚οΈ Conversation History")
            for i, entry in enumerate(st.session_state.conversation_history[file_id]):
                with st.expander(f"Q{i+1}: {entry['question'][:50]}..."):
                    st.write("**User:**", entry["question"])
                    st.write("**AI:**", entry["response"])

        # Convert diagnosis to speech if enabled
        if tts_enabled:
            if st.button("πŸ”Š Listen to Diagnosis"):
                with st.spinner("Generating audio... 🎡"):
                    audio_bytes = text_to_speech(diagnosis, language)
                    if audio_bytes:
                        st.audio(audio_bytes, format="audio/mp3")

    else:
        st.write("❌ No crop disease detected.")

# Instructions for users
st.markdown("""
---
### How to Use:
1. Upload an image of a plant leaf with suspected disease.
2. Provide context (optional) about symptoms or concerns.
3. The system detects the disease using AI.
4. Gemini generates a diagnosis with symptoms and treatments.
5. Ask follow-up questions, and the AI will remember previous responses.
6. Optionally, listen to the AI-generated diagnosis.
""")