File size: 7,189 Bytes
e5ecd23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
import os
import tempfile
import base64
import requests
from datetime import datetime
from gtts import gTTS
from googletrans import Translator
import google.generativeai as genai # Import Gemini API
# Configure Google Gemini API
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
# Load YOLO model for crop disease detection
yolo_model = YOLO("models/best.pt")
# Initialize conversation history if not set
if "conversation_history" not in st.session_state:
st.session_state.conversation_history = {}
# Function to preprocess images
def preprocess_image(image, target_size=(224, 224)):
"""Resize image for AI models."""
image = Image.fromarray(image)
image = image.resize(target_size)
return image
# Generate response from Gemini AI with history
def generate_gemini_response(disease_list, user_context="", conversation_history=None):
"""Generate a structured diagnosis using Gemini API, considering conversation history."""
try:
model = genai.GenerativeModel("gemini-1.5-pro")
# Start with detected diseases
prompt = f"""
You are an expert plant pathologist. The detected crop diseases are: {', '.join(disease_list)}.
User's context or question: {user_context if user_context else "Provide a general analysis"}
"""
# Add past conversation history for better continuity
if conversation_history:
history_text = "\n\nPrevious conversation:\n"
for entry in conversation_history:
history_text += f"- User: {entry['question']}\n- AI: {entry['response']}\n"
prompt += history_text
# Ask Gemini for a structured diagnosis
prompt += """
Provide a detailed diagnosis including:
1. Symptoms
2. Causes and risk factors
3. Impact on crops
4. Treatment options (short-term & long-term)
5. Prevention strategies
"""
response = model.generate_content(prompt)
return response.text if response else "No response from Gemini."
except Exception as e:
return f"Error connecting to Gemini API: {str(e)}"
# Perform inference using YOLO
def inference(image):
"""Detect crop diseases in the given image."""
results = yolo_model(image, conf=0.4)
infer = np.zeros(image.shape, dtype=np.uint8)
detected_classes = []
class_names = {}
for r in results:
infer = r.plot()
class_names = r.names
detected_classes = r.boxes.cls.tolist()
return infer, detected_classes, class_names
# Convert text to speech
def text_to_speech(text, language="en"):
"""Convert text to speech using gTTS."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
tts = gTTS(text=text, lang=language, slow=False)
tts.save(temp_audio.name)
with open(temp_audio.name, "rb") as audio_file:
audio_bytes = audio_file.read()
os.unlink(temp_audio.name)
return audio_bytes
except Exception as e:
st.error(f"Error generating speech: {str(e)}")
return None
# Initialize Streamlit UI
st.title("π± AI-Powered Crop Disease Detection & Diagnosis π¬")
# Sidebar settings
with st.sidebar:
st.header("Settings")
# Fake model selection (Still uses Gemini)
selected_model = st.selectbox("Choose Model", ["Gemini", "GPT-4", "Claude", "Llama 3", "Mistral"], help="This app always uses Gemini.")
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
# Text-to-Speech Settings
tts_enabled = st.checkbox("Enable Text-to-Speech", value=True)
language = st.selectbox("Speech Language", options=["en", "es", "fr", "de"], format_func=lambda x: {
"en": "English",
"es": "Spanish",
"fr": "French",
"de": "German"
}[x])
if st.button("Clear Conversation History"):
st.session_state.conversation_history = {}
st.success("Conversation history cleared!")
# User context input
st.subheader("π Provide Initial Context or Ask a Question")
user_context = st.text_area("Enter any details, symptoms, or questions about the plant's condition.", placeholder="Example: My tomato plant leaves are turning yellow. Is it a disease or a nutrient deficiency?")
# Upload an image
uploaded_file = st.file_uploader("π€ Upload a plant image", type=["jpg", "jpeg", "png"])
if uploaded_file:
file_id = uploaded_file.name
# Initialize conversation history for this image if not set
if file_id not in st.session_state.conversation_history:
st.session_state.conversation_history[file_id] = []
# Convert file to image
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
img = cv2.imdecode(file_bytes, 1)
# Perform inference
processed_image, detected_classes, class_names = inference(img)
# Display processed image with detected diseases
st.image(processed_image, caption="π Detected Diseases", use_column_width=True)
if detected_classes:
detected_disease_names = [class_names[cls] for cls in detected_classes]
st.write(f"β
**Detected Diseases:** {', '.join(detected_disease_names)}")
# AI-generated diagnosis from Gemini
st.subheader("π AI Diagnosis")
with st.spinner("Generating diagnosis... π"):
diagnosis = generate_gemini_response(detected_disease_names, user_context, st.session_state.conversation_history[file_id])
# Save response to history
st.session_state.conversation_history[file_id].append({"question": user_context, "response": diagnosis})
# Display the diagnosis
st.write(diagnosis)
# Show past conversation history
if st.session_state.conversation_history[file_id]:
st.subheader("ποΈ Conversation History")
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
with st.expander(f"Q{i+1}: {entry['question'][:50]}..."):
st.write("**User:**", entry["question"])
st.write("**AI:**", entry["response"])
# Convert diagnosis to speech if enabled
if tts_enabled:
if st.button("π Listen to Diagnosis"):
with st.spinner("Generating audio... π΅"):
audio_bytes = text_to_speech(diagnosis, language)
if audio_bytes:
st.audio(audio_bytes, format="audio/mp3")
else:
st.write("β No crop disease detected.")
# Instructions for users
st.markdown("""
---
### How to Use:
1. Upload an image of a plant leaf with suspected disease.
2. Provide context (optional) about symptoms or concerns.
3. The system detects the disease using AI.
4. Gemini generates a diagnosis with symptoms and treatments.
5. Ask follow-up questions, and the AI will remember previous responses.
6. Optionally, listen to the AI-generated diagnosis.
""")
|