File size: 8,567 Bytes
e5ecd23
 
 
 
 
 
 
 
 
 
 
 
 
8d2b319
e5ecd23
 
 
8d2b319
e5ecd23
 
8d2b319
e5ecd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b642ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ecd23
 
 
 
 
 
8d2b319
45e17b8
 
 
e5ecd23
 
 
45e17b8
e5ecd23
 
 
 
45e17b8
 
 
 
 
 
 
e5ecd23
 
 
 
 
ae9f3a7
e5ecd23
 
 
 
 
 
 
 
 
 
4a4dd01
e5ecd23
 
 
 
 
946687c
 
ae9f3a7
946687c
 
 
 
8d2b319
 
 
 
 
 
 
 
946687c
 
 
 
 
 
 
 
 
 
 
e5ecd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb1922
e5ecd23
 
 
 
 
45e17b8
 
 
 
 
 
 
 
 
5bf28ce
45e17b8
e5ecd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a4dd01
5bf28ce
 
e5ecd23
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
import os
import tempfile
import base64
import requests
from datetime import datetime
import google.generativeai as genai  # Import Gemini API

# Configuring Google Gemini API
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

# Loading YOLO model for crop disease detection
yolo_model = YOLO("models/best.pt")

# Initializing conversation history if not set
if "conversation_history" not in st.session_state:
    st.session_state.conversation_history = {}

# Function to preprocess images
def preprocess_image(image, target_size=(224, 224)):
    """Resize image for AI models."""
    image = Image.fromarray(image)
    image = image.resize(target_size)
    return image

# Generate response from Gemini AI with history
def generate_gemini_response(disease_list, user_context="", conversation_history=None):
    """Generate a structured diagnosis using Gemini API, considering conversation history."""
    try:
        model = genai.GenerativeModel("gemini-1.5-pro")

        # Start with detected diseases
        prompt = f"""
        You are an expert plant pathologist. The detected crop diseases are: {', '.join(disease_list)}.
        
        User's context or question: {user_context if user_context else "Provide a general analysis"}
        """

        # Add past conversation history for better continuity
        if conversation_history:
            history_text = "\n\nPrevious conversation:\n"
            for entry in conversation_history:
                history_text += f"- User: {entry['question']}\n- AI: {entry['response']}\n"
            prompt += history_text

        # Ask Gemini for a structured diagnosis
        prompt += """
        For each detected disease, provide a structured analysis following this format:
        1. Disease Name: [Name]
       - Pathogen: [Causative organism]
       - Severity Level: [Based on visual symptoms]
       - Key Symptoms:
         * [Symptom 1]
         * [Symptom 2]
       - Economic Impact:
         * [Brief description of potential crop losses]
       - Treatment Options:
         * Immediate actions: [Short-term solutions]
         * Long-term management: [Preventive measures]
       - Environmental Conditions:
         * Favorable conditions for disease development
         * Risk factors
        2. Recommendations:
       - Immediate Steps:
         * [Action items for immediate control]
       - Prevention Strategy:
         * [Long-term prevention measures]
       - Monitoring Protocol:
         * [What to watch for]"""


        response = model.generate_content(prompt)
        return response.text if response else "No response from Gemini."
    except Exception as e:
        return f"Error connecting to Gemini API: {str(e)}"

# Performing inference using YOLO
def inference(image, conf_threshold=0.5):
    """Detect crop diseases in the given image with confidence filtering."""
    results = yolo_model(image, conf=0.4)  # Adjusted confidence threshold for detection
    infer = np.zeros(image.shape, dtype=np.uint8)
    detected_classes = []
    class_names = {}
    confidence_scores = []

    for r in results:
        infer = r.plot()
        class_names = r.names
        for i, cls in enumerate(r.boxes.cls.tolist()):
            confidence = r.boxes.conf[i].item()  # Get confidence score
            if confidence >= conf_threshold:  # Only consider high-confidence detections
                detected_classes.append(cls)
                confidence_scores.append(confidence)

    return infer, detected_classes, class_names, confidence_scores




# Initialize Streamlit UI
st.title("AI-Powered Crop Disease Detection & Diagnosis System")

# Sidebar settings
with st.sidebar:
    st.header("Settings")

    # Fake model selection (Still uses Gemini)
    selected_model = st.selectbox("Choose Model", ["Gemini", "GPT-4", "Claude", "Llama 3", "Mistral"], help="This app always uses Gemini.")

    confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
    
  

    if st.button("Clear Conversation History"):
        st.session_state.conversation_history = {}
        st.success("Conversation history cleared!")


# User context input with example prompts
st.subheader("Provide Initial Context or Ask a Question")

# Generalized example prompts for easier input
example_prompts = {
    "Select an example...": "",
    "General Plant Health Issue": "My plant leaves are wilting and turning yellow. Is this a disease or a nutrient deficiency?",
    "Leaf Spots and Discoloration": "I see dark spots on my crop leaves. Could this be a fungal or bacterial infection?",
    "Leaves Drying or Curling": "The leaves on my plants are curling and drying up. What could be causing this?",
    "Pest or Disease?": "I noticed tiny insects on my plants along with some leaf damage. Could this be a pest problem or a disease?",
    "Overwatering or Root Rot?": "My plant leaves are turning brown and mushy. Is this due to overwatering or a root infection?",
    "Poor Crop Growth": "My crops are growing very slowly and seem weak. Could this be due to soil problems or disease?",
    "Weather and Disease Connection": "It has been raining a lot, and now my plants have mold. Could the weather be causing a fungal disease?",
    "Regional Disease Concern": "I'm in a humid area and my crops often get infected. What are common diseases for this climate?",
}

# Dropdown menu for selecting an example
selected_example = st.selectbox("Choose an example to auto-fill:", list(example_prompts.keys()))

# Auto-fill the text area when an example is selected
user_context = st.text_area(
    "Enter details, symptoms, or a question about your plant condition.",
    value=example_prompts[selected_example] if selected_example != "Select an example..." else "",
    placeholder="Example: My plant leaves are turning yellow and wilting. Is this a disease or a nutrient issue?"
)

# Upload an image
uploaded_file = st.file_uploader("πŸ“€ Upload a plant image", type=["jpg", "jpeg", "png"])

if uploaded_file:
    file_id = uploaded_file.name

    # Initialize conversation history for this image if not set
    if file_id not in st.session_state.conversation_history:
        st.session_state.conversation_history[file_id] = []

    # Convert file to image
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    img = cv2.imdecode(file_bytes, 1)

    # Perform inference
    processed_image, detected_classes, class_names, confidence_scores = inference(img)

    # Display processed image with detected diseases
    st.image(processed_image, caption="πŸ” Detected Diseases", use_column_width=True)

    if detected_classes:
    # Convert detected class indexes to names
        detected_disease_names = [
            f"{class_names[cls]} ({confidence_scores[i]:.2f})"
            for i, cls in enumerate(detected_classes)
    ]

    # Show only the most confident detections
    if detected_disease_names:
        st.write(f"βœ… **High Confidence Diseases Detected:** {', '.join(detected_disease_names)}")
    


        # AI-generated diagnosis from Gemini
        st.subheader("πŸ“‹ AI Diagnosis")
        with st.spinner("Generating diagnosis... πŸ”„"):
            diagnosis = generate_gemini_response(detected_disease_names, user_context, st.session_state.conversation_history[file_id])

        # Save response to history
        st.session_state.conversation_history[file_id].append({"question": user_context, "response": diagnosis})

        # Display the diagnosis
        st.write(diagnosis)

        # Show past conversation history
        if st.session_state.conversation_history[file_id]:
            st.subheader("πŸ—‚οΈ Conversation History")
            for i, entry in enumerate(st.session_state.conversation_history[file_id]):
                with st.expander(f"Q{i+1}: {entry['question'][:50]}..."):
                    st.write("**User:**", entry["question"])
                    st.write("**AI:**", entry["response"]) 
    else:
        st.write("βœ… No high-confidence diseases detected.")

# Instructions for users
st.markdown("""
---
### How to Use:
1. Upload an image of a plant leaf with suspected disease.
2. Provide context (optional) about symptoms or concerns.
3. The system detects the disease using AI.
4. Gemini generates a diagnosis with symptoms and treatments.
5. Ask follow-up questions, and the AI will remember previous responses.
""")