Sobit commited on
Commit
45e17b8
Β·
verified Β·
1 Parent(s): 909768a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -7
app.py CHANGED
@@ -67,19 +67,25 @@ def generate_gemini_response(disease_list, user_context="", conversation_history
67
  return f"Error connecting to Gemini API: {str(e)}"
68
 
69
  # Performing inference using YOLO
70
- def inference(image):
71
- """Detect crop diseases in the given image."""
72
- results = yolo_model(image, conf=0.4)
73
  infer = np.zeros(image.shape, dtype=np.uint8)
74
  detected_classes = []
75
  class_names = {}
 
76
 
77
  for r in results:
78
  infer = r.plot()
79
  class_names = r.names
80
- detected_classes = r.boxes.cls.tolist()
 
 
 
 
 
 
81
 
82
- return infer, detected_classes, class_names
83
 
84
  # Converting text to chosen language speech
85
  def text_to_speech(text, language="en"):
@@ -171,8 +177,18 @@ if uploaded_file:
171
  st.image(processed_image, caption="πŸ” Detected Diseases", use_column_width=True)
172
 
173
  if detected_classes:
174
- detected_disease_names = [class_names[cls] for cls in detected_classes]
175
- st.write(f"βœ… **Detected Diseases:** {', '.join(detected_disease_names)}")
 
 
 
 
 
 
 
 
 
 
176
 
177
  # AI-generated diagnosis from Gemini
178
  st.subheader("πŸ“‹ AI Diagnosis")
 
67
  return f"Error connecting to Gemini API: {str(e)}"
68
 
69
  # Performing inference using YOLO
70
+ def inference(image, conf_threshold=0.5):
71
+ """Detect crop diseases in the given image with confidence filtering."""
72
+ results = yolo_model(image, conf=0.4) # Adjusted confidence threshold for detection
73
  infer = np.zeros(image.shape, dtype=np.uint8)
74
  detected_classes = []
75
  class_names = {}
76
+ confidence_scores = []
77
 
78
  for r in results:
79
  infer = r.plot()
80
  class_names = r.names
81
+ for i, cls in enumerate(r.boxes.cls.tolist()):
82
+ confidence = r.boxes.conf[i].item() # Get confidence score
83
+ if confidence >= conf_threshold: # Only consider high-confidence detections
84
+ detected_classes.append(cls)
85
+ confidence_scores.append(confidence)
86
+
87
+ return infer, detected_classes, class_names, confidence_scores
88
 
 
89
 
90
  # Converting text to chosen language speech
91
  def text_to_speech(text, language="en"):
 
177
  st.image(processed_image, caption="πŸ” Detected Diseases", use_column_width=True)
178
 
179
  if detected_classes:
180
+ # Convert detected class indexes to names
181
+ detected_disease_names = [
182
+ f"{class_names[cls]} ({confidence_scores[i]:.2f})"
183
+ for i, cls in enumerate(detected_classes)
184
+ ]
185
+
186
+ # Show only the most confident detections
187
+ if detected_disease_names:
188
+ st.write(f"βœ… **High Confidence Diseases Detected:** {', '.join(detected_disease_names)}")
189
+ else:
190
+ st.write("βœ… No high-confidence diseases detected.")
191
+
192
 
193
  # AI-generated diagnosis from Gemini
194
  st.subheader("πŸ“‹ AI Diagnosis")