File size: 7,683 Bytes
e5ecd23 2f9a860 e5ecd23 2f9a860 e5ecd23 2f9a860 8d2b319 e5ecd23 8d2b319 2f9a860 e5ecd23 8d2b319 e5ecd23 2f9a860 e5ecd23 a1f07a4 e5ecd23 b642ff3 e5ecd23 8d2b319 2f9a860 45e17b8 2f9a860 e5ecd23 2f9a860 e5ecd23 ae9f3a7 e5ecd23 4a4dd01 e5ecd23 946687c ae9f3a7 946687c 8d2b319 946687c e5ecd23 2f9a860 e5ecd23 2f9a860 58ce72a 5bf28ce 45e17b8 e5ecd23 a1f07a4 e5ecd23 a1f07a4 e5ecd23 a1f07a4 e5ecd23 a1f07a4 e5ecd23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from io import BytesIO
#from ultralytics import YOLO
import os
import tempfile
import base64
import requests
from datetime import datetime
import google.generativeai as genai # Import Gemini API
from tensorflow.keras.models import load_model
from vit import vit_classifier
# Load the model
model = load_model('vit_updated.weights.h5') # Replace with your model file path
# Configuring Google Gemini API
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
# Loading YOLO model for crop disease detection
#yolo_model = YOLO("models/best.pt")
# Initializing conversation history if not set
if "conversation_history" not in st.session_state:
st.session_state.conversation_history = {}
# Function to preprocess images
def preprocess_image(image, target_size=(256, 256)):
"""Resize image for AI models."""
image = Image.fromarray(image)
image = image.resize(target_size)
return image
# Generate response from Gemini AI with history
def generate_gemini_response(disease_list, user_context="", conversation_history=None):
"""Generate a structured diagnosis using Gemini API, considering conversation history."""
try:
model = genai.GenerativeModel("gemini-1.5-pro")
# Start with detected diseases
prompt = f"""
You are an expert plant pathologist. The detected crop diseases is: {predicted_labels}.
User's context or question: {user_context if user_context else "Provide a general analysis"}
"""
# Add past conversation history for better continuity
if conversation_history:
history_text = "\n\nPrevious conversation:\n"
for entry in conversation_history:
history_text += f"- User: {entry['question']}\n- AI: {entry['response']}\n"
prompt += history_text
# Ask Gemini for a structured diagnosis
prompt += """
For each detected disease, provide a structured analysis following this format:
1. Disease Name: [Name]
- Pathogen: [Causative organism]
- Severity Level: [Based on visual symptoms]
- Key Symptoms:
* [Symptom 1]
* [Symptom 2]
- Economic Impact:
* [Brief description of potential crop losses]
- Treatment Options:
* Immediate actions: [Short-term solutions]
* Long-term management: [Preventive measures]
- Environmental Conditions:
* Favorable conditions for disease development
* Risk factors
2. Recommendations:
- Immediate Steps:
* [Action items for immediate control]
- Prevention Strategy:
* [Long-term prevention measures]
- Monitoring Protocol:
* [What to watch for]"""
response = model.generate_content(prompt)
return response.text if response else "No response from Gemini."
except Exception as e:
return f"Error connecting to Gemini API: {str(e)}"
# Performing inference using YOLO
def inference(image):
"""Detect crop diseases in the given image with confidence filtering."""
predictions = vit_classifier.predict(image)
predicted_labels = np.argmax(predictions, axis=1)
return predicted_labels
# Initialize Streamlit UI
st.title("AI-Powered Crop Disease Detection & Diagnosis System")
# Sidebar settings
with st.sidebar:
st.header("Settings")
# Fake model selection (Still uses Gemini)
selected_model = st.selectbox("Choose Model", ["Gemini", "GPT-4", "Claude", "Llama 3", "Mistral"], help="This app always uses Gemini.")
confidence_threshold = st.slider("Detection Confidence Threshold", 0.0, 1.0, 0.4)
if st.button("Clear Conversation History"):
st.session_state.conversation_history = {}
st.success("Conversation history cleared!")
# User context input with example prompts
st.subheader("Provide Initial Context or Ask a Question")
# Generalized example prompts for easier input
example_prompts = {
"Select an example...": "",
"General Plant Health Issue": "My plant leaves are wilting and turning yellow. Is this a disease or a nutrient deficiency?",
"Leaf Spots and Discoloration": "I see dark spots on my crop leaves. Could this be a fungal or bacterial infection?",
"Leaves Drying or Curling": "The leaves on my plants are curling and drying up. What could be causing this?",
"Pest or Disease?": "I noticed tiny insects on my plants along with some leaf damage. Could this be a pest problem or a disease?",
"Overwatering or Root Rot?": "My plant leaves are turning brown and mushy. Is this due to overwatering or a root infection?",
"Poor Crop Growth": "My crops are growing very slowly and seem weak. Could this be due to soil problems or disease?",
"Weather and Disease Connection": "It has been raining a lot, and now my plants have mold. Could the weather be causing a fungal disease?",
"Regional Disease Concern": "I'm in a humid area and my crops often get infected. What are common diseases for this climate?",
}
# Dropdown menu for selecting an example
selected_example = st.selectbox("Choose an example to auto-fill:", list(example_prompts.keys()))
# Auto-fill the text area when an example is selected
user_context = st.text_area(
"Enter details, symptoms, or a question about your plant condition.",
value=example_prompts[selected_example] if selected_example != "Select an example..." else "",
placeholder="Example: My plant leaves are turning yellow and wilting. Is this a disease or a nutrient issue?"
)
# Upload an image
uploaded_file = st.file_uploader("π€ Upload a plant image", type=["jpg", "jpeg", "png"])
if uploaded_file:
file_id = uploaded_file.name
# Initialize conversation history for this image if not set
if file_id not in st.session_state.conversation_history:
st.session_state.conversation_history[file_id] = []
# Convert file to image
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
img = cv2.imdecode(file_bytes, 1)
# Perform inference
predicted_labels = inference(img)
# Display processed image with detected diseases
st.image(img, caption="π Detected Diseases", use_column_width=True)
st.write(f"β
**High Confidence Diseases Detected:** {predicted_labels}")
# AI-generated diagnosis from Gemini
st.subheader("π AI Diagnosis")
with st.spinner("Generating diagnosis... π"):
diagnosis = generate_gemini_response(detected_disease_names, user_context, st.session_state.conversation_history[file_id])
# Save response to history
st.session_state.conversation_history[file_id].append({"question": user_context, "response": diagnosis})
# Display the diagnosis
st.write(diagnosis)
# Show past conversation history
if st.session_state.conversation_history[file_id]:
st.subheader("ποΈ Conversation History")
for i, entry in enumerate(st.session_state.conversation_history[file_id]):
with st.expander(f"Q{i+1}: {entry['question'][:50]}..."):
st.write("**User:**", entry["question"])
st.write("**AI:**", entry["response"])
# Instructions for users
st.markdown("""
---
### How to Use:
1. Upload an image of a plant leaf with suspected disease.
2. Provide context (optional) about symptoms or concerns.
3. The system detects the disease using AI.
4. Gemini generates a diagnosis with symptoms and treatments.
5. Ask follow-up questions, and the AI will remember previous responses.
""")
|