File size: 7,887 Bytes
8349bb4
 
 
 
8d56069
8349bb4
 
 
8d56069
8349bb4
 
 
 
 
de96410
8349bb4
8d56069
8349bb4
 
8d56069
8349bb4
8d56069
 
 
968f053
8d56069
 
 
968f053
8d56069
8349bb4
968f053
 
8d56069
968f053
8d56069
8349bb4
 
 
 
8d56069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dfec0d
8d56069
 
4ba3845
8d56069
 
8349bb4
8d56069
8349bb4
8d56069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8349bb4
8d56069
8349bb4
 
 
8d56069
 
 
 
 
 
8349bb4
 
8d56069
 
 
8349bb4
8d56069
8349bb4
 
 
8d56069
 
 
 
 
8349bb4
8d56069
 
 
8349bb4
8d56069
8349bb4
 
 
8d56069
 
 
 
 
 
8349bb4
8d56069
 
 
 
 
8349bb4
8d56069
8349bb4
 
8d56069
8349bb4
 
 
 
 
8d56069
8349bb4
 
 
8d56069
8349bb4
8d56069
8349bb4
 
8d56069
8349bb4
8d56069
 
 
 
 
 
 
 
 
 
8349bb4
 
8d56069
8349bb4
 
8d56069
 
 
 
 
 
 
 
 
 
8349bb4
8d56069
 
 
8349bb4
8d56069
 
 
 
 
 
 
 
 
8349bb4
8d56069
 
 
8349bb4
8d56069
 
8349bb4
8d56069
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import fitz  # PyMuPDF for PDF extraction
import pytesseract
from PIL import Image
import os
import re

# Set Hugging Face API Key (Set this in Hugging Face Secrets)
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]

# Load Free LLM from Hugging Face
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={"temperature": 0.5})

# Streamlit App Configuration
st.set_page_config(page_title="DocuMentorAI", layout="wide")
st.title("📄 DocuMentorAI")
st.write("Upload job openings and your CV/Resume to generate professional application documents.")

# Upload Job Opening (PDF/Image/Text)
st.subheader("📢 Upload Job Opening Details")
job_opening_file = st.file_uploader("Upload Job Opening (PDF, Image, or Text)", type=["pdf", "png", "jpg", "jpeg", "txt"])

# Upload CV/Resume
st.subheader("📄 Upload CV/Resume")
cv_resume_file = st.file_uploader("Upload your CV/Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"])

# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
    pdf_bytes = pdf_file.read()
    with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
        return " ".join([page.get_text() for page in doc])

# Function to extract text from Image using OCR
def extract_text_from_image(image_file):
    image = Image.open(image_file)
    return pytesseract.image_to_string(image)

# Function to extract text from uploaded files
def extract_text(uploaded_file):
    if uploaded_file:
        file_type = uploaded_file.type
        if file_type == "application/pdf":
            return extract_text_from_pdf(uploaded_file)
        else:
            return extract_text_from_image(uploaded_file)
    return ""

# Extract text from job opening and CV/Resume
job_opening_text = extract_text(job_opening_file)
cv_resume_text = extract_text(cv_resume_file)

# Display Extracted Text
if job_opening_text:
    st.subheader("Extracted Job Opening Details")
    st.text_area("Preview:", job_opening_text, height=150)

if cv_resume_text:
    st.subheader("Extracted CV/Resume Details")
    st.text_area("Preview:", cv_resume_text, height=150)

# Function to extract professor name, designation, and university
def extract_professor_details(text):
    professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+\s[A-Z][a-z]+)"
    university_pattern = r"(University|Institute|College|School of [A-Za-z]+)"
    
    professor_match = re.search(professor_pattern, text)
    university_match = re.search(university_pattern, text)

    professor_name = professor_match.group(0) if professor_match else "Not Found"
    university_name = university_match.group(0) if university_match else "Not Found"

    return professor_name, university_name

# Extract professor details if job opening is uploaded
professor_name, university_name = extract_professor_details(job_opening_text)

# LLM Prompt Templates
email_template = PromptTemplate.from_template("""
Write a professional cold email for a research position.
- Address the professor formally.
- Introduce yourself and academic background.
- Express interest in their research.
- Highlight key skills from your CV.
- Conclude with a polite request.
### Input:
- Professor: {professor_name}
- University: {university_name}
- Research Interests: {research_interests}
- Why This Lab: {reason}
- CV Highlights: {resume_text}
### Output:
A well-structured, professional cold email.
""")

cover_letter_template = PromptTemplate.from_template("""
Write a compelling job application cover letter.
- Address the employer formally.
- Mention job title and where you found it.
- Highlight key skills and experiences.
- Relate background to the company.
- Conclude with enthusiasm.
### Input:
- Job Title: {job_title}
- Company: {company}
- Key Skills: {key_skills}
- CV Highlights: {resume_text}
### Output:
A strong, well-formatted cover letter.
""")

research_statement_template = PromptTemplate.from_template("""
Write a research statement for Ph.D. applications.
- Discuss research background and motivation.
- Explain key research experiences and findings.
- Outline future research interests and goals.
- Highlight contributions to the field.
### Input:
- Research Background: {research_background}
- Key Research Projects: {key_projects}
- Future Goals: {future_goals}
### Output:
A well-structured, professional research statement.
""")

sop_template = PromptTemplate.from_template("""
Write a compelling Statement of Purpose (SOP).
- Introduce motivation for graduate studies.
- Discuss academic background.
- Explain relevant experiences and research.
- Outline career goals.
- Justify fit for the program.
### Input:
- Motivation: {motivation}
- Academic Background: {academic_background}
- Research & Projects: {research_experiences}
- Career Goals: {career_goals}
- Why This Program: {why_this_program}
### Output:
A well-structured SOP.
""")

# LangChain Chains
email_chain = LLMChain(llm=llm, prompt=email_template)
cover_letter_chain = LLMChain(llm=llm, prompt=cover_letter_template)
research_statement_chain = LLMChain(llm=llm, prompt=research_statement_template)
sop_chain = LLMChain(llm=llm, prompt=sop_template)

# User Inputs
st.subheader("📩 Generate Application Documents")
tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])

# Cold Email Generation
with tab1:
    st.write(f"🧑‍🏫 **Detected Professor:** {professor_name} at {university_name}")
    research_interests = st.text_area("Research Interests")
    reason = st.text_area("Why this professor/lab?")
    
    if st.button("Generate Cold Email"):
        email = email_chain.run({
            "professor_name": professor_name,
            "university_name": university_name,
            "research_interests": research_interests,
            "reason": reason,
            "resume_text": cv_resume_text
        })
        st.text_area("Generated Cold Email", email, height=250)

# Cover Letter Generation
with tab2:
    job_title = st.text_input("Job Title")
    company_name = university_name if university_name != "Not Found" else st.text_input("Company/University")
    key_skills = st.text_area("Key Skills")

    if st.button("Generate Cover Letter"):
        cover_letter = cover_letter_chain.run({
            "job_title": job_title,
            "company": company_name,
            "key_skills": key_skills,
            "resume_text": cv_resume_text
        })
        st.text_area("Generated Cover Letter", cover_letter, height=250)

# Research Statement Generation
with tab3:
    research_background = st.text_area("Research Background")
    key_projects = st.text_area("Key Research Projects")
    future_goals = st.text_area("Future Research Goals")

    if st.button("Generate Research Statement"):
        research_statement = research_statement_chain.run({
            "research_background": research_background,
            "key_projects": key_projects,
            "future_goals": future_goals
        })
        st.text_area("Generated Research Statement", research_statement, height=250)

# SOP Generation
with tab4:
    motivation = st.text_area("Motivation for Graduate Studies")
    academic_background = st.text_area("Academic Background")
    research_experiences = st.text_area("Research & Projects")
    career_goals = st.text_area("Career Goals")
    why_this_program = st.text_area("Why This Program")

    if st.button("Generate SOP"):
        sop = sop_chain.run({
            "motivation": motivation,
            "academic_background": academic_background,
            "research_experiences": research_experiences,
            "career_goals": career_goals,
            "why_this_program": why_this_program
        })
        st.text_area("Generated SOP", sop, height=250)