Spaces:
Sleeping
Sleeping
File size: 11,365 Bytes
8349bb4 1ad6ea2 8179b6a 1ad6ea2 a3bc63b 968f053 1ad6ea2 8349bb4 8d56069 1ad6ea2 8349bb4 8d56069 1ad6ea2 8d56069 8349bb4 1ad6ea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import fitz # PyMuPDF for PDF extraction
from PIL import Image
import os
import pytesseract
import re
# Set Hugging Face API Key (Set this in Hugging Face Secrets)
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
# Load Free LLM from Hugging Face
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={"temperature": 0.5})
# Streamlit App Configuration
st.set_page_config(page_title="DocuMentorAI", layout="wide", page_icon="📄")
st.title("📄 DocuMentorAI")
st.write("Generate professional application documents with ease!")
# Custom CSS for better UI
st.markdown("""
<style>
.stTextArea textarea { font-size: 16px !important; }
.stButton button { width: 100%; background-color: #4CAF50; color: white; }
.stDownloadButton button { width: 100%; background-color: #008CBA; color: white; }
.stMarkdown { font-size: 18px; }
.stSpinner div { margin: auto; }
</style>
""", unsafe_allow_html=True)
# Text Input for Job Opening Details
st.subheader("📢 Enter Opening Details")
job_opening_text = st.text_area(
"Paste the job/research opening details here...",
height=150,
placeholder="Example: 'We are hiring a Research Assistant at XYZ University. The ideal candidate has experience in machine learning and data analysis...'"
)
# Upload CV/Resume
st.subheader("📄 Upload CV/Resume")
cv_resume_file = st.file_uploader(
"Upload your CV/Resume (PDF or Image)",
type=["pdf", "png", "jpg", "jpeg"],
help="Upload a PDF or image of your CV/Resume for text extraction."
)
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
try:
pdf_bytes = pdf_file.read()
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
return " ".join([page.get_text() for page in doc])
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
# Function to extract text from Image using OCR
def extract_text_from_image(image_file):
try:
image = Image.open(image_file)
return pytesseract.image_to_string(image)
except Exception as e:
st.error(f"Error extracting text from image: {e}")
return ""
# Function to extract text from uploaded files
def extract_text(uploaded_file):
if uploaded_file:
file_type = uploaded_file.type
if file_type == "application/pdf":
return extract_text_from_pdf(uploaded_file)
else:
return extract_text_from_image(uploaded_file)
return ""
# Extract text from CV/Resume
cv_resume_text = extract_text(cv_resume_file)
# Display Extracted Text
if job_opening_text:
with st.expander("🔍 View Entered Opening Details"):
st.markdown(f"**Job Opening Details:**\n\n{job_opening_text}")
if cv_resume_text:
with st.expander("🔍 View Extracted CV/Resume Details"):
st.markdown(f"**CV/Resume Details:**\n\n{cv_resume_text}")
# Function to extract professor name, designation, and university
def extract_professor_details(text):
professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+\s[A-Z][a-z]+)"
university_pattern = r"(University|Institute|College|School of [A-Za-z]+)"
professor_match = re.search(professor_pattern, text)
university_match = re.search(university_pattern, text)
professor_name = professor_match.group(0) if professor_match else "Not Found"
university_name = university_match.group(0) if university_match else "Not Found"
return professor_name, university_name
# Extract professor details if job opening is uploaded
professor_name, university_name = extract_professor_details(job_opening_text)
# LLM Prompt Templates
email_template = PromptTemplate.from_template("""
Write a professional cold email for a research position.
- Address the professor formally.
- Introduce yourself and academic background.
- Express interest in their research.
- Highlight key skills from your CV.
- Conclude with a polite request.
### Input:
- Professor: {professor_name}
- University: {university_name}
- Research Interests: {research_interests}
- Why This Lab: {reason}
- CV Highlights: {resume_text}
### Output:
A well-structured, professional cold email.
""")
cover_letter_template = PromptTemplate.from_template("""
Write a compelling job application cover letter.
- Address the employer formally.
- Mention job title and where you found it.
- Highlight key skills and experiences.
- Relate background to the company.
- Conclude with enthusiasm.
### Input:
- Job Title: {job_title}
- Company: {company}
- Key Skills: {key_skills}
- CV Highlights: {resume_text}
### Output:
A strong, well-formatted cover letter.
""")
research_statement_template = PromptTemplate.from_template("""
Write a research statement for Ph.D. applications.
- Discuss research background and motivation.
- Explain key research experiences and findings.
- Outline future research interests and goals.
- Highlight contributions to the field.
### Input:
- Research Background: {research_background}
- Key Research Projects: {key_projects}
- Future Goals: {future_goals}
### Output:
A well-structured, professional research statement.
""")
sop_template = PromptTemplate.from_template("""
Write a compelling Statement of Purpose (SOP).
- Introduce motivation for graduate studies.
- Discuss academic background.
- Explain relevant experiences and research.
- Outline career goals.
- Justify fit for the program.
### Input:
- Motivation: {motivation}
- Academic Background: {academic_background}
- Research & Projects: {research_experiences}
- Career Goals: {career_goals}
- Why This Program: {why_this_program}
### Output:
A well-structured SOP.
""")
# LangChain Chains
email_chain = LLMChain(llm=llm, prompt=email_template)
cover_letter_chain = LLMChain(llm=llm, prompt=cover_letter_template)
research_statement_chain = LLMChain(llm=llm, prompt=research_statement_template)
sop_chain = LLMChain(llm=llm, prompt=sop_template)
# User Inputs
st.subheader("📩 Generate Application Documents")
tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])
# Cold Email Generation
with tab1:
st.write(f"🧑🏫 **Detected Professor:** {professor_name} at {university_name}")
research_interests = st.text_area("Research Interests", placeholder="Example: Machine Learning, Data Analysis, etc.")
reason = st.text_area("Why this professor/lab?", placeholder="Example: I am particularly interested in your work on...")
if st.button("Generate Cold Email"):
if not job_opening_text or not cv_resume_text:
st.error("Please provide job opening details and upload your CV/Resume.")
else:
with st.spinner("Generating Cold Email..."):
try:
email = email_chain.run({
"professor_name": professor_name,
"university_name": university_name,
"research_interests": research_interests,
"reason": reason,
"resume_text": cv_resume_text
})
st.markdown("**Generated Cold Email:**")
st.markdown(email)
st.download_button("Download Email", email, file_name="cold_email.txt")
except Exception as e:
st.error(f"Error generating cold email: {e}")
# Cover Letter Generation
with tab2:
job_title = st.text_input("Job Title", placeholder="Example: Research Assistant")
company_name = university_name if university_name != "Not Found" else st.text_input("Company/University", placeholder="Example: XYZ University")
key_skills = st.text_area("Key Skills", placeholder="Example: Python, Machine Learning, Data Analysis")
if st.button("Generate Cover Letter"):
if not job_opening_text or not cv_resume_text:
st.error("Please provide job opening details and upload your CV/Resume.")
else:
with st.spinner("Generating Cover Letter..."):
try:
cover_letter = cover_letter_chain.run({
"job_title": job_title,
"company": company_name,
"key_skills": key_skills,
"resume_text": cv_resume_text
})
st.markdown("**Generated Cover Letter:**")
st.markdown(cover_letter)
st.download_button("Download Cover Letter", cover_letter, file_name="cover_letter.txt")
except Exception as e:
st.error(f"Error generating cover letter: {e}")
# Research Statement Generation
with tab3:
research_background = st.text_area("Research Background", placeholder="Example: My research focuses on...")
key_projects = st.text_area("Key Research Projects", placeholder="Example: Developed a machine learning model for...")
future_goals = st.text_area("Future Research Goals", placeholder="Example: I aim to explore...")
if st.button("Generate Research Statement"):
with st.spinner("Generating Research Statement..."):
try:
research_statement = research_statement_chain.run({
"research_background": research_background,
"key_projects": key_projects,
"future_goals": future_goals
})
st.markdown("**Generated Research Statement:**")
st.markdown(research_statement)
st.download_button("Download Research Statement", research_statement, file_name="research_statement.txt")
except Exception as e:
st.error(f"Error generating research statement: {e}")
# SOP Generation
with tab4:
motivation = st.text_area("Motivation for Graduate Studies", placeholder="Example: I have always been passionate about...")
academic_background = st.text_area("Academic Background", placeholder="Example: I completed my undergraduate degree in...")
research_experiences = st.text_area("Research & Projects", placeholder="Example: During my undergraduate studies, I worked on...")
career_goals = st.text_area("Career Goals", placeholder="Example: My long-term goal is to...")
why_this_program = st.text_area("Why This Program", placeholder="Example: This program aligns with my research interests because...")
if st.button("Generate SOP"):
with st.spinner("Generating SOP..."):
try:
sop = sop_chain.run({
"motivation": motivation,
"academic_background": academic_background,
"research_experiences": research_experiences,
"career_goals": career_goals,
"why_this_program": why_this_program
})
st.markdown("**Generated SOP:**")
st.markdown(sop)
st.download_button("Download SOP", sop, file_name="sop.txt")
except Exception as e:
st.error(f"Error generating SOP: {e}")
# Reset Button
if st.button("🔄 Reset All Inputs and Outputs"):
st.experimental_rerun() |