Spaces:
Running
Running
File size: 4,385 Bytes
ec9e166 3579388 0fe1d37 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 1b26c07 ec9e166 16063a5 24a1172 16063a5 ec9e166 1b26c07 ec9e166 5bea413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
"""
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
This script uses the LangChain Language Model API to answer questions using Retrieval QA
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
generate responses.
"""
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
model = "BAAI/bge-base-en-v1.5"
encode_kwargs = {"normalize_embeddings": True}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model,
encode_kwargs=encode_kwargs,
model_kwargs={"device": "cpu"}
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-v0.3",
model_kwargs={"temperature": 0.5, "max_length": 4000},
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
return_source_documents=True # Add this line to return source documents
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({"question": user_question})
st.session_state.chat_history = response["chat_history"]
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Display references
if "source_documents" in response:
st.write("References:")
for doc in response["source_documents"]:
st.write(f"- {doc.metadata.get('source', 'Unknown source')}, page {doc.metadata.get('page', 'Unknown page')}")
def main():
load_dotenv()
st.set_page_config(page_title="Chat with Multiple PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with Multiple PDFs :books:")
# Add Hugging Face token input
huggingface_token = st.text_input("Enter your Hugging Face API token:", type="password")
if huggingface_token:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
user_question = st.text_input("Ask a question about your documents:")
if user_question:
if not huggingface_token:
st.error("Please enter your Hugging Face API token to proceed.")
else:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing"):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == "__main__":
main() |