File size: 4,385 Bytes
ec9e166
3579388
 
0fe1d37
 
ec9e166
 
1b26c07
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9e166
 
 
1b26c07
 
 
ec9e166
 
 
 
1b26c07
 
 
 
ec9e166
1b26c07
ec9e166
 
 
 
1b26c07
 
 
 
 
 
 
ec9e166
 
 
1b26c07
 
 
 
ec9e166
1b26c07
 
 
 
 
 
 
ec9e166
 
 
1b26c07
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9e166
 
1b26c07
 
ec9e166
 
 
 
 
 
 
1b26c07
ec9e166
16063a5
 
 
 
 
 
24a1172
16063a5
 
 
 
 
 
ec9e166
 
 
 
 
 
 
1b26c07
 
 
 
ec9e166
 
5bea413
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
This script uses the LangChain Language Model API to answer questions using Retrieval QA 
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to 
generate responses.
"""

import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from langchain.chains import RetrievalQA

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

def get_vectorstore(text_chunks):
    model = "BAAI/bge-base-en-v1.5"
    encode_kwargs = {"normalize_embeddings": True}
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model,
        encode_kwargs=encode_kwargs,
        model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def get_conversation_chain(vectorstore):
    llm = HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-v0.3",
        model_kwargs={"temperature": 0.5, "max_length": 4000},
    )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory,
        return_source_documents=True  # Add this line to return source documents
    )
    return conversation_chain

def handle_userinput(user_question):
    response = st.session_state.conversation({"question": user_question})
    st.session_state.chat_history = response["chat_history"]
    
    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
    
    # Display references
    if "source_documents" in response:
        st.write("References:")
        for doc in response["source_documents"]:
            st.write(f"- {doc.metadata.get('source', 'Unknown source')}, page {doc.metadata.get('page', 'Unknown page')}")

def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with Multiple PDFs", page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with Multiple PDFs :books:")

    # Add Hugging Face token input
    huggingface_token = st.text_input("Enter your Hugging Face API token:", type="password")
    if huggingface_token:
        os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token

    user_question = st.text_input("Ask a question about your documents:")
    
    if user_question:
        if not huggingface_token:
            st.error("Please enter your Hugging Face API token to proceed.")
        else:
            handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
        )
        if st.button("Process"):
            with st.spinner("Processing"):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                vectorstore = get_vectorstore(text_chunks)
                st.session_state.conversation = get_conversation_chain(vectorstore)

if __name__ == "__main__":
    main()