Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,131 +15,94 @@ from langchain.vectorstores import FAISS
|
|
15 |
from langchain.chat_models import ChatOpenAI
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
18 |
from htmlTemplates import css, bot_template, user_template
|
19 |
from langchain.llms import HuggingFaceHub
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def get_pdf_text(pdf_docs):
|
23 |
-
"""
|
24 |
-
Extract text from a list of PDF documents.
|
25 |
-
|
26 |
-
Parameters
|
27 |
-
----------
|
28 |
-
pdf_docs : list
|
29 |
-
List of PDF documents to extract text from.
|
30 |
-
|
31 |
-
Returns
|
32 |
-
-------
|
33 |
-
str
|
34 |
-
Extracted text from all the PDF documents.
|
35 |
-
|
36 |
-
"""
|
37 |
text = ""
|
38 |
for pdf in pdf_docs:
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
return text
|
43 |
|
44 |
-
|
45 |
def get_text_chunks(text):
|
46 |
-
"""
|
47 |
-
Split the input text into chunks.
|
48 |
-
|
49 |
-
Parameters
|
50 |
-
----------
|
51 |
-
text : str
|
52 |
-
The input text to be split.
|
53 |
-
|
54 |
-
Returns
|
55 |
-
-------
|
56 |
-
list
|
57 |
-
List of text chunks.
|
58 |
-
|
59 |
-
"""
|
60 |
text_splitter = CharacterTextSplitter(
|
61 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
62 |
)
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
return chunks
|
65 |
|
66 |
-
|
67 |
def get_vectorstore(text_chunks):
|
68 |
-
"""
|
69 |
-
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
|
70 |
-
|
71 |
-
Parameters
|
72 |
-
----------
|
73 |
-
text_chunks : list
|
74 |
-
List of text chunks to be embedded.
|
75 |
-
|
76 |
-
Returns
|
77 |
-
-------
|
78 |
-
FAISS
|
79 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
80 |
-
|
81 |
-
"""
|
82 |
model = "BAAI/bge-base-en-v1.5"
|
83 |
encode_kwargs = {
|
84 |
"normalize_embeddings": True
|
85 |
-
}
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
return vectorstore
|
91 |
|
92 |
-
|
93 |
def get_conversation_chain(vectorstore):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
Parameters
|
98 |
-
----------
|
99 |
-
vectorstore : FAISS
|
100 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
101 |
-
|
102 |
-
Returns
|
103 |
-
-------
|
104 |
-
ConversationalRetrievalChain
|
105 |
-
A conversational retrieval chain for generating responses.
|
106 |
-
|
107 |
-
"""
|
108 |
-
llm = HuggingFaceHub(
|
109 |
-
repo_id="mistralai/Mistral-7B-v0.3",
|
110 |
-
model_kwargs={"temperature": 0.5, "max_length": 4000},
|
111 |
-
)
|
112 |
-
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
return conversation_chain
|
119 |
|
120 |
-
|
121 |
def handle_userinput(user_question):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
for i, message in enumerate(st.session_state.chat_history):
|
133 |
-
if i % 2 == 0:
|
134 |
-
st.write("//_^ User: " + message.content)
|
135 |
-
else:
|
136 |
-
st.write("🤖 ChatBot: " + message.content)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
def main():
|
140 |
-
"""
|
141 |
-
Putting it all together.
|
142 |
-
"""
|
143 |
st.set_page_config(
|
144 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
145 |
page_icon=":books:",
|
@@ -150,15 +113,13 @@ def main():
|
|
150 |
|
151 |
st.write(css, unsafe_allow_html=True)
|
152 |
|
153 |
-
# set huggingface hub token in st.text_input widget
|
154 |
-
# then hide the input
|
155 |
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password")
|
156 |
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
#
|
161 |
-
|
162 |
|
163 |
if "conversation" not in st.session_state:
|
164 |
st.session_state.conversation = None
|
@@ -177,18 +138,20 @@ def main():
|
|
177 |
)
|
178 |
if st.button("Process"):
|
179 |
with st.spinner("Processing"):
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# get the text chunks
|
184 |
-
text_chunks = get_text_chunks(raw_text)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
190 |
-
|
191 |
|
|
|
|
|
|
|
|
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
-
main()
|
|
|
15 |
from langchain.chat_models import ChatOpenAI
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
from langchain.chains import ConversationalRetrievalChain
|
18 |
+
from langchain.schema import BaseOutputParser, OutputParserException
|
19 |
from htmlTemplates import css, bot_template, user_template
|
20 |
from langchain.llms import HuggingFaceHub
|
21 |
|
22 |
+
class ReferenceOutputParser(BaseOutputParser):
|
23 |
+
def parse(self, text: str) -> dict:
|
24 |
+
try:
|
25 |
+
result, references = text.split("References:")
|
26 |
+
return {"result": result.strip(), "references": [ref.strip() for ref in references.split("\n") if ref.strip()]}
|
27 |
+
except ValueError:
|
28 |
+
raise OutputParserException(f"Could not parse output: {text}")
|
29 |
|
30 |
def get_pdf_text(pdf_docs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
text = ""
|
32 |
for pdf in pdf_docs:
|
33 |
+
try:
|
34 |
+
pdf_reader = PdfReader(pdf)
|
35 |
+
for page in pdf_reader.pages:
|
36 |
+
text += page.extract_text()
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error extracting text from PDF: {e}")
|
39 |
return text
|
40 |
|
|
|
41 |
def get_text_chunks(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
text_splitter = CharacterTextSplitter(
|
43 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
44 |
)
|
45 |
+
try:
|
46 |
+
chunks = text_splitter.split_text(text)
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error splitting text into chunks: {e}")
|
49 |
+
chunks = []
|
50 |
return chunks
|
51 |
|
|
|
52 |
def get_vectorstore(text_chunks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
model = "BAAI/bge-base-en-v1.5"
|
54 |
encode_kwargs = {
|
55 |
"normalize_embeddings": True
|
56 |
+
}
|
57 |
+
try:
|
58 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
59 |
+
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
60 |
+
)
|
61 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error creating vector store: {e}")
|
64 |
+
vectorstore = None
|
65 |
return vectorstore
|
66 |
|
|
|
67 |
def get_conversation_chain(vectorstore):
|
68 |
+
if vectorstore is None:
|
69 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
try:
|
72 |
+
llm = HuggingFaceHub(
|
73 |
+
repo_id="mistralai/Mistral-7B-v0.3",
|
74 |
+
model_kwargs={"temperature": 0.5, "max_length": 4000},
|
75 |
+
)
|
76 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
77 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
78 |
+
llm=llm, retriever=vectorstore.as_retriever(), memory=memory, output_parser=ReferenceOutputParser()
|
79 |
+
)
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"Error creating conversation chain: {e}")
|
82 |
+
conversation_chain = None
|
83 |
return conversation_chain
|
84 |
|
|
|
85 |
def handle_userinput(user_question):
|
86 |
+
if st.session_state.conversation is None:
|
87 |
+
st.error("Please process the PDF files before asking a question.")
|
88 |
+
return
|
89 |
+
|
90 |
+
try:
|
91 |
+
response = st.session_state.conversation({"question": user_question})
|
92 |
+
st.session_state.chat_history = response["chat_history"]
|
93 |
+
|
94 |
+
result = response["result"]
|
95 |
+
references = response["references"]
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
st.write("//_^ User: " + user_question)
|
98 |
+
st.write("🤖 ChatBot: " + result)
|
99 |
+
st.write("References:")
|
100 |
+
for ref in references:
|
101 |
+
st.write("- " + ref)
|
102 |
+
except Exception as e:
|
103 |
+
st.error(f"Error handling user input: {e}")
|
104 |
|
105 |
def main():
|
|
|
|
|
|
|
106 |
st.set_page_config(
|
107 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
108 |
page_icon=":books:",
|
|
|
113 |
|
114 |
st.write(css, unsafe_allow_html=True)
|
115 |
|
|
|
|
|
116 |
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password")
|
117 |
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
|
118 |
|
119 |
+
if huggingface_token:
|
120 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
|
121 |
+
#if openai_api_key:
|
122 |
+
# os.environ["OPENAI_API_KEY"] = openai_api_key
|
123 |
|
124 |
if "conversation" not in st.session_state:
|
125 |
st.session_state.conversation = None
|
|
|
138 |
)
|
139 |
if st.button("Process"):
|
140 |
with st.spinner("Processing"):
|
141 |
+
try:
|
142 |
+
# get pdf text
|
143 |
+
raw_text = get_pdf_text(pdf_docs)
|
|
|
|
|
144 |
|
145 |
+
# get the text chunks
|
146 |
+
text_chunks = get_text_chunks(raw_text)
|
147 |
|
148 |
+
# create vector store
|
149 |
+
vectorstore = get_vectorstore(text_chunks)
|
150 |
|
151 |
+
# create conversation chain
|
152 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
153 |
+
except Exception as e:
|
154 |
+
st.error(f"Error processing PDF files: {e}")
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
main()
|