Spaces:
Runtime error
Runtime error
File size: 6,108 Bytes
f590b07 30841fb f590b07 3c9b48f f590b07 39840e5 f590b07 3c9b48f 39840e5 3c9b48f f590b07 3c9b48f f590b07 30841fb 39840e5 f590b07 39840e5 f590b07 39840e5 3c9b48f 39840e5 f590b07 39840e5 30841fb 3c9b48f 39840e5 3c9b48f 39840e5 f590b07 30841fb 39840e5 f590b07 39840e5 30841fb f590b07 3c9b48f f590b07 3c9b48f f590b07 3c9b48f f590b07 30841fb 3c9b48f 30841fb f590b07 3c9b48f f590b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
from typing import List
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from inference.models import YOLOWorld
from utils.efficient_sam import load, inference_with_box
MARKDOWN = """
# YOLO-World + EfficientSAM 🔥
This is a demo of zero-shot instance segmentation using
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and
[EfficientSAM](https://github.com/yformer/EfficientSAM).
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
[Supervision](https://github.com/roboflow/supervision).
"""
EXAMPLES = [
['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
]
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EFFICIENT_SAM_MODEL = load(device=DEVICE)
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def process_categories(categories: str) -> List[str]:
return [category.strip() for category in categories.split(',')]
def process_image(
input_image: np.ndarray,
categories: str,
confidence_threshold: float = 0.3,
iou_threshold: float = 0.5,
with_segmentation: bool = True,
with_confidence: bool = False,
with_class_agnostic_nms: bool = False,
) -> np.ndarray:
categories = process_categories(categories)
YOLO_WORLD_MODEL.set_classes(categories)
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
detections = sv.Detections.from_inference(results)
detections = detections.with_nms(
class_agnostic=with_class_agnostic_nms,
threshold=iou_threshold)
if with_segmentation:
masks = []
for [x_min, y_min, x_max, y_max] in detections.xyxy:
box = np.array([[x_min, y_min], [x_max, y_max]])
mask = inference_with_box(input_image, box, EFFICIENT_SAM_MODEL, DEVICE)
masks.append(mask)
detections.mask = np.array(masks)
labels = [
(
f"{categories[class_id]}: {confidence:.2f}"
if with_confidence
else f"{categories[class_id]}"
)
for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
output_image = input_image.copy()
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
return output_image
confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="Confidence Threshold",
info=(
"The confidence threshold for the YOLO-World model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
))
with_segmentation_component = gr.Checkbox(
value=True,
label="With Segmentation",
info=(
"Whether to run EfficientSAM for instance segmentation."
)
)
with_confidence_component = gr.Checkbox(
value=False,
label="Display Confidence",
info=(
"Whether to display the confidence of the detected objects."
)
)
with_class_agnostic_nms_component = gr.Checkbox(
value=False,
label="Use Class-Agnostic NMS",
info=(
"Suppress overlapping bounding boxes across all classes."
)
)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Accordion("Configuration", open=False):
confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
with_segmentation_component.render()
with_confidence_component.render()
with_class_agnostic_nms_component.render()
with gr.Row():
input_image_component = gr.Image(
type='numpy',
label='Input Image'
)
output_image_component = gr.Image(
type='numpy',
label='Output Image'
)
with gr.Row():
categories_text_component = gr.Textbox(
label='Categories',
placeholder='comma separated list of categories',
scale=7
)
submit_button_component = gr.Button(
value='Submit',
scale=1,
variant='primary'
)
gr.Examples(
fn=process_image,
examples=EXAMPLES,
inputs=[
input_image_component,
categories_text_component,
confidence_threshold_component,
iou_threshold_component,
with_segmentation_component,
with_confidence_component,
with_class_agnostic_nms_component
],
outputs=output_image_component
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
categories_text_component,
confidence_threshold_component,
iou_threshold_component,
with_segmentation_component,
with_confidence_component,
with_class_agnostic_nms_component
],
outputs=output_image_component
)
demo.launch(debug=False, show_error=True)
|