File size: 6,108 Bytes
f590b07
 
30841fb
f590b07
 
 
3c9b48f
f590b07
 
39840e5
 
f590b07
3c9b48f
39840e5
3c9b48f
 
 
f590b07
3c9b48f
 
f590b07
 
30841fb
 
 
 
39840e5
 
 
 
f590b07
39840e5
 
f590b07
 
 
 
 
 
39840e5
3c9b48f
 
 
 
 
 
 
39840e5
f590b07
39840e5
 
30841fb
3c9b48f
 
 
39840e5
 
 
 
 
 
 
 
 
3c9b48f
 
 
 
 
39840e5
 
 
f590b07
30841fb
39840e5
f590b07
39840e5
30841fb
f590b07
 
 
3c9b48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f590b07
 
3c9b48f
 
 
 
 
 
 
f590b07
 
 
 
 
 
 
 
 
 
 
 
 
3c9b48f
 
 
 
 
 
f590b07
30841fb
 
 
3c9b48f
 
 
 
 
 
 
 
 
30841fb
 
f590b07
 
 
3c9b48f
 
 
 
 
 
 
 
 
f590b07
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from typing import List

import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from inference.models import YOLOWorld

from utils.efficient_sam import load, inference_with_box

MARKDOWN = """
# YOLO-World + EfficientSAM 🔥

This is a demo of zero-shot instance segmentation using 
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and 
[EfficientSAM](https://github.com/yformer/EfficientSAM).

Powered by Roboflow [Inference](https://github.com/roboflow/inference) and 
[Supervision](https://github.com/roboflow/supervision).
"""

EXAMPLES = [
    ['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
]

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EFFICIENT_SAM_MODEL = load(device=DEVICE)
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")

BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()


def process_categories(categories: str) -> List[str]:
    return [category.strip() for category in categories.split(',')]


def process_image(
    input_image: np.ndarray,
    categories: str,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,
) -> np.ndarray:
    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
    detections = sv.Detections.from_inference(results)
    detections = detections.with_nms(
        class_agnostic=with_class_agnostic_nms,
        threshold=iou_threshold)
    if with_segmentation:
        masks = []
        for [x_min, y_min, x_max, y_max] in detections.xyxy:
            box = np.array([[x_min, y_min], [x_max, y_max]])
            mask = inference_with_box(input_image, box, EFFICIENT_SAM_MODEL, DEVICE)
            masks.append(mask)
        detections.mask = np.array(masks)

    labels = [
        (
            f"{categories[class_id]}: {confidence:.2f}"
            if with_confidence
            else f"{categories[class_id]}"
        )
        for class_id, confidence in
        zip(detections.class_id, detections.confidence)
    ]
    output_image = input_image.copy()
    output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
    output_image = MASK_ANNOTATOR.annotate(output_image, detections)
    output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
    output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
    return output_image


confidence_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.3,
    step=0.01,
    label="Confidence Threshold",
    info=(
        "The confidence threshold for the YOLO-World model. Lower the threshold to "
        "reduce false negatives, enhancing the model's sensitivity to detect "
        "sought-after objects. Conversely, increase the threshold to minimize false "
        "positives, preventing the model from identifying objects it shouldn't."
    ))

iou_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.5,
    step=0.01,
    label="IoU Threshold",
    info=(
        "The Intersection over Union (IoU) threshold for non-maximum suppression. "
        "Decrease the value to lessen the occurrence of overlapping bounding boxes, "
        "making the detection process stricter. On the other hand, increase the value "
        "to allow more overlapping bounding boxes, accommodating a broader range of "
        "detections."
    ))

with_segmentation_component = gr.Checkbox(
    value=True,
    label="With Segmentation",
    info=(
        "Whether to run EfficientSAM for instance segmentation."
    )
)

with_confidence_component = gr.Checkbox(
    value=False,
    label="Display Confidence",
    info=(
        "Whether to display the confidence of the detected objects."
    )
)

with_class_agnostic_nms_component = gr.Checkbox(
    value=False,
    label="Use Class-Agnostic NMS",
    info=(
        "Suppress overlapping bounding boxes across all classes."
    )
)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Accordion("Configuration", open=False):
        confidence_threshold_component.render()
        iou_threshold_component.render()
        with gr.Row():
            with_segmentation_component.render()
            with_confidence_component.render()
            with_class_agnostic_nms_component.render()
    with gr.Row():
        input_image_component = gr.Image(
            type='numpy',
            label='Input Image'
        )
        output_image_component = gr.Image(
            type='numpy',
            label='Output Image'
        )
    with gr.Row():
        categories_text_component = gr.Textbox(
            label='Categories',
            placeholder='comma separated list of categories',
            scale=7
        )
        submit_button_component = gr.Button(
            value='Submit',
            scale=1,
            variant='primary'
        )
    gr.Examples(
        fn=process_image,
        examples=EXAMPLES,
        inputs=[
            input_image_component,
            categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_image_component
    )

    submit_button_component.click(
        fn=process_image,
        inputs=[
            input_image_component,
            categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_image_component
    )

demo.launch(debug=False, show_error=True)