Spaces:
Runtime error
Runtime error
Advanced configuration added
Browse files
app.py
CHANGED
|
@@ -1,20 +1,23 @@
|
|
| 1 |
from typing import List
|
| 2 |
|
| 3 |
import cv2
|
| 4 |
-
import torch
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import supervision as sv
|
|
|
|
| 8 |
from inference.models import YOLOWorld
|
| 9 |
|
| 10 |
from utils.efficient_sam import load, inference_with_box
|
| 11 |
|
| 12 |
MARKDOWN = """
|
| 13 |
-
# YOLO-World
|
| 14 |
|
| 15 |
-
This is a demo of zero-shot instance segmentation using
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
|
|
|
| 18 |
"""
|
| 19 |
|
| 20 |
EXAMPLES = [
|
|
@@ -35,19 +38,21 @@ def process_categories(categories: str) -> List[str]:
|
|
| 35 |
|
| 36 |
|
| 37 |
def process_image(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
) -> np.ndarray:
|
| 46 |
categories = process_categories(categories)
|
| 47 |
YOLO_WORLD_MODEL.set_classes(categories)
|
| 48 |
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
|
| 49 |
detections = sv.Detections.from_inference(results)
|
| 50 |
-
detections = detections.with_nms(
|
|
|
|
|
|
|
| 51 |
if with_segmentation:
|
| 52 |
masks = []
|
| 53 |
for [x_min, y_min, x_max, y_max] in detections.xyxy:
|
|
@@ -57,7 +62,11 @@ def process_image(
|
|
| 57 |
detections.mask = np.array(masks)
|
| 58 |
|
| 59 |
labels = [
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
for class_id, confidence in
|
| 62 |
zip(detections.class_id, detections.confidence)
|
| 63 |
]
|
|
@@ -70,8 +79,67 @@ def process_image(
|
|
| 70 |
return output_image
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
with gr.Blocks() as demo:
|
| 74 |
gr.Markdown(MARKDOWN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
with gr.Row():
|
| 76 |
input_image_component = gr.Image(
|
| 77 |
type='numpy',
|
|
@@ -85,19 +153,39 @@ with gr.Blocks() as demo:
|
|
| 85 |
categories_text_component = gr.Textbox(
|
| 86 |
label='Categories',
|
| 87 |
placeholder='comma separated list of categories',
|
| 88 |
-
scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
-
submit_button_component = gr.Button('Submit', scale=1)
|
| 91 |
gr.Examples(
|
| 92 |
fn=process_image,
|
| 93 |
examples=EXAMPLES,
|
| 94 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
outputs=output_image_component
|
| 96 |
)
|
| 97 |
|
| 98 |
submit_button_component.click(
|
| 99 |
fn=process_image,
|
| 100 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
outputs=output_image_component
|
| 102 |
)
|
| 103 |
|
|
|
|
| 1 |
from typing import List
|
| 2 |
|
| 3 |
import cv2
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import supervision as sv
|
| 7 |
+
import torch
|
| 8 |
from inference.models import YOLOWorld
|
| 9 |
|
| 10 |
from utils.efficient_sam import load, inference_with_box
|
| 11 |
|
| 12 |
MARKDOWN = """
|
| 13 |
+
# YOLO-World + EfficientSAM 🔥
|
| 14 |
|
| 15 |
+
This is a demo of zero-shot instance segmentation using
|
| 16 |
+
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and
|
| 17 |
+
[EfficientSAM](https://github.com/yformer/EfficientSAM).
|
| 18 |
|
| 19 |
+
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
| 20 |
+
[Supervision](https://github.com/roboflow/supervision).
|
| 21 |
"""
|
| 22 |
|
| 23 |
EXAMPLES = [
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def process_image(
|
| 41 |
+
input_image: np.ndarray,
|
| 42 |
+
categories: str,
|
| 43 |
+
confidence_threshold: float = 0.3,
|
| 44 |
+
iou_threshold: float = 0.5,
|
| 45 |
+
with_segmentation: bool = True,
|
| 46 |
+
with_confidence: bool = False,
|
| 47 |
+
with_class_agnostic_nms: bool = False,
|
| 48 |
) -> np.ndarray:
|
| 49 |
categories = process_categories(categories)
|
| 50 |
YOLO_WORLD_MODEL.set_classes(categories)
|
| 51 |
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
|
| 52 |
detections = sv.Detections.from_inference(results)
|
| 53 |
+
detections = detections.with_nms(
|
| 54 |
+
class_agnostic=with_class_agnostic_nms,
|
| 55 |
+
threshold=iou_threshold)
|
| 56 |
if with_segmentation:
|
| 57 |
masks = []
|
| 58 |
for [x_min, y_min, x_max, y_max] in detections.xyxy:
|
|
|
|
| 62 |
detections.mask = np.array(masks)
|
| 63 |
|
| 64 |
labels = [
|
| 65 |
+
(
|
| 66 |
+
f"{categories[class_id]}: {confidence:.2f}"
|
| 67 |
+
if with_confidence
|
| 68 |
+
else f"{categories[class_id]}"
|
| 69 |
+
)
|
| 70 |
for class_id, confidence in
|
| 71 |
zip(detections.class_id, detections.confidence)
|
| 72 |
]
|
|
|
|
| 79 |
return output_image
|
| 80 |
|
| 81 |
|
| 82 |
+
confidence_threshold_component = gr.Slider(
|
| 83 |
+
minimum=0,
|
| 84 |
+
maximum=1.0,
|
| 85 |
+
value=0.3,
|
| 86 |
+
step=0.01,
|
| 87 |
+
label="Confidence Threshold",
|
| 88 |
+
info=(
|
| 89 |
+
"The confidence threshold for the YOLO-World model. Lower the threshold to "
|
| 90 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
| 91 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
| 92 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
| 93 |
+
))
|
| 94 |
+
|
| 95 |
+
iou_threshold_component = gr.Slider(
|
| 96 |
+
minimum=0,
|
| 97 |
+
maximum=1.0,
|
| 98 |
+
value=0.5,
|
| 99 |
+
step=0.01,
|
| 100 |
+
label="IoU Threshold",
|
| 101 |
+
info=(
|
| 102 |
+
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
|
| 103 |
+
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
|
| 104 |
+
"making the detection process stricter. On the other hand, increase the value "
|
| 105 |
+
"to allow more overlapping bounding boxes, accommodating a broader range of "
|
| 106 |
+
"detections."
|
| 107 |
+
))
|
| 108 |
+
|
| 109 |
+
with_segmentation_component = gr.Checkbox(
|
| 110 |
+
value=True,
|
| 111 |
+
label="With Segmentation",
|
| 112 |
+
info=(
|
| 113 |
+
"Whether to run EfficientSAM for instance segmentation."
|
| 114 |
+
)
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
with_confidence_component = gr.Checkbox(
|
| 118 |
+
value=False,
|
| 119 |
+
label="Display Confidence",
|
| 120 |
+
info=(
|
| 121 |
+
"Whether to display the confidence of the detected objects."
|
| 122 |
+
)
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with_class_agnostic_nms_component = gr.Checkbox(
|
| 126 |
+
value=False,
|
| 127 |
+
label="Use Class-Agnostic NMS",
|
| 128 |
+
info=(
|
| 129 |
+
"Suppress overlapping bounding boxes across all classes."
|
| 130 |
+
)
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
with gr.Blocks() as demo:
|
| 135 |
gr.Markdown(MARKDOWN)
|
| 136 |
+
with gr.Accordion("Configuration", open=False):
|
| 137 |
+
confidence_threshold_component.render()
|
| 138 |
+
iou_threshold_component.render()
|
| 139 |
+
with gr.Row():
|
| 140 |
+
with_segmentation_component.render()
|
| 141 |
+
with_confidence_component.render()
|
| 142 |
+
with_class_agnostic_nms_component.render()
|
| 143 |
with gr.Row():
|
| 144 |
input_image_component = gr.Image(
|
| 145 |
type='numpy',
|
|
|
|
| 153 |
categories_text_component = gr.Textbox(
|
| 154 |
label='Categories',
|
| 155 |
placeholder='comma separated list of categories',
|
| 156 |
+
scale=7
|
| 157 |
+
)
|
| 158 |
+
submit_button_component = gr.Button(
|
| 159 |
+
value='Submit',
|
| 160 |
+
scale=1,
|
| 161 |
+
variant='primary'
|
| 162 |
)
|
|
|
|
| 163 |
gr.Examples(
|
| 164 |
fn=process_image,
|
| 165 |
examples=EXAMPLES,
|
| 166 |
+
inputs=[
|
| 167 |
+
input_image_component,
|
| 168 |
+
categories_text_component,
|
| 169 |
+
confidence_threshold_component,
|
| 170 |
+
iou_threshold_component,
|
| 171 |
+
with_segmentation_component,
|
| 172 |
+
with_confidence_component,
|
| 173 |
+
with_class_agnostic_nms_component
|
| 174 |
+
],
|
| 175 |
outputs=output_image_component
|
| 176 |
)
|
| 177 |
|
| 178 |
submit_button_component.click(
|
| 179 |
fn=process_image,
|
| 180 |
+
inputs=[
|
| 181 |
+
input_image_component,
|
| 182 |
+
categories_text_component,
|
| 183 |
+
confidence_threshold_component,
|
| 184 |
+
iou_threshold_component,
|
| 185 |
+
with_segmentation_component,
|
| 186 |
+
with_confidence_component,
|
| 187 |
+
with_class_agnostic_nms_component
|
| 188 |
+
],
|
| 189 |
outputs=output_image_component
|
| 190 |
)
|
| 191 |
|