File size: 12,733 Bytes
2efe949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8793261
 
 
2efe949
 
8793261
2efe949
 
 
 
 
 
 
 
8793261
2efe949
 
 
 
8793261
 
 
 
 
 
2efe949
 
 
8793261
 
 
 
 
2efe949
 
 
 
 
 
 
 
 
 
8793261
2efe949
8793261
 
2efe949
8793261
 
2efe949
 
 
8793261
2efe949
 
 
 
8793261
 
 
 
2efe949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8793261
 
 
 
 
2efe949
 
 
c947698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efe949
 
 
 
 
 
 
 
 
8793261
 
2efe949
 
 
 
 
 
 
 
 
 
 
8793261
2efe949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8793261
 
2efe949
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
from unittest.mock import patch
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.dynamic_module_utils import get_imports
import torch
import requests
from PIL import Image, ImageDraw
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
import io

def workaround_fixed_get_imports(filename: str | os.PathLike) -> list[str]:
    if not str(filename).endswith("/modeling_florence2.py"):
        return get_imports(filename)
    imports = get_imports(filename)
    imports.remove("flash_attn")
    return imports

with patch("transformers.dynamic_module_utils.get_imports", workaround_fixed_get_imports):
    model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True).to("cuda").eval()
    processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)

colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red',
            'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue']

def fig_to_pil(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return Image.open(buf)

@spaces.GPU
def run_example(task_prompt, image, text_input=None):
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
    with torch.inference_mode():
        generated_ids = model.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=1024,
            early_stopping=False,
            do_sample=False,
            num_beams=3,
        )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text,
        task=task_prompt,
        image_size=(image.size[0], image.size[1])
    )
    return parsed_answer

def plot_bbox(image, data):
    fig, ax = plt.subplots()
    ax.imshow(image)
    for bbox, label in zip(data['bboxes'], data['labels']):
        x1, y1, x2, y2 = bbox
        rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
        ax.add_patch(rect)
        plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='indigo', alpha=0.5))
    ax.axis('off')
    return fig_to_pil(fig)

def draw_polygons(image, prediction, fill_mask=False):
    fig, ax = plt.subplots()
    ax.imshow(image)
    scale = 1
    for polygons, label in zip(prediction['polygons'], prediction['labels']):
        color = random.choice(colormap)
        fill_color = random.choice(colormap) if fill_mask else None
        for _polygon in polygons:
            _polygon = np.array(_polygon).reshape(-1, 2)
            if _polygon.shape[0] < 3:
                continue
            _polygon = (_polygon * scale).reshape(-1).tolist()
            if len(_polygon) % 2 != 0:
                continue
            polygon_points = np.array(_polygon).reshape(-1, 2)
            if fill_mask:
                polygon = patches.Polygon(polygon_points, edgecolor=color, facecolor=fill_color, linewidth=2)
            else:
                polygon = patches.Polygon(polygon_points, edgecolor=color, fill=False, linewidth=2)
            ax.add_patch(polygon)
        plt.text(polygon_points[0, 0], polygon_points[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
    ax.axis('off')
    return fig_to_pil(fig)

def draw_ocr_bboxes(image, prediction):
    fig, ax = plt.subplots()
    ax.imshow(image)
    scale = 1
    bboxes, labels = prediction['quad_boxes'], prediction['labels']
    for box, label in zip(bboxes, labels):
        color = random.choice(colormap)
        new_box = np.array(box) * scale
        if new_box.ndim == 1:
            new_box = new_box.reshape(-1, 2)
        polygon = patches.Polygon(new_box, edgecolor=color, fill=False, linewidth=3)
        ax.add_patch(polygon)
        plt.text(new_box[0, 0], new_box[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
    ax.axis('off')
    return fig_to_pil(fig)


@spaces.GPU(duration=120)
def process_video(input_video_path, task_prompt):
    cap = cv2.VideoCapture(input_video_path)
    if not cap.isOpened():
        return None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    if frame_width <= 0 or frame_height <= 0 or fps <= 0 or total_frames <= 0:
        cap.release()
        return None

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter("output_vid.mp4", fourcc, fps, (frame_width, frame_height))

    if not out.isOpened():
        cap.release()
        return None

    processed_frames = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        pil_image = Image.fromarray(frame_rgb)

        result = run_example(task_prompt, pil_image)

        processed_image = pil_image
        if task_prompt == "<OD>":
            if "<OD>" in result and "bboxes" in result["<OD>"] and "labels" in result["<OD>"]:
                processed_image = plot_bbox(pil_image, result['<OD>'])
        elif task_prompt == "<DENSE_REGION_CAPTION>":
            if "<DENSE_REGION_CAPTION>" in result and "polygons" in result["<DENSE_REGION_CAPTION>"] and "labels" in result["<DENSE_REGION_CAPTION>"]:
                processed_image = draw_polygons(pil_image, result['<DENSE_REGION_CAPTION>'], fill_mask=True)

        processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGB2BGR)
        out.write(processed_frame)
        processed_frames += 1

    cap.release()
    out.release()
    cv2.destroyAllWindows()

    if processed_frames == 0:
        return None

    return "output_vid.mp4"

css = """
#output {
    min-height: 100px;
    overflow: auto;
    border: 1px solid #ccc;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>")
    with gr.Tab(label="Image"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture", type="pil")
                task_dropdown = gr.Dropdown(
                    choices=["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding",
                             "Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation",
                             "Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description",
                             "OCR", "OCR with Region"],
                    label="Task", value="Caption"
                )
                text_input = gr.Textbox(label="Text Input (is Optional)", visible=False)
                gr.Examples(
                    examples=[
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Detailed Caption",
                            "",
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Object Detection",
                            "",
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Caption to Phrase Grounding",
                            "A green car parked in front of a yellow building."
                        ],
                        [
                            "https://datasets-server.huggingface.co/assets/huggingface/documentation-images/--/566a43334e8b6331dddd8142495bc2f3209f32b0/--/default/validation/3/image/image.jpg?Expires=1718892641&Signature=GFpkyFBNrVf~Mq0jFjbpXWQLCOQblOm6Y1R57zl0tZOKWg5lfK8Jv1Tkxv35sMOARYDiJEE7C0hIp0fKazo1lYbv0ZTAKkwHUY2RroifVea4JRCyovJVptsmIZnlXkJU68N7bJhh8K07cu04G5mqaLRRehqDABKqEqgIdtBS5WcUXdoqkl0Fh2c8KN3GK9hZba9E6ZouBXhuffEEzykss1pIm6MW-WLx5l7~RXKu6BwcFq~6--3KoYVM4U~aEQdgTJg6P2ESH4DkEWN8Qpf~vaHBi2CZQSGurM1U0sZqIYrSLPaUov1h00MQMmnNEzMDZUeIq7~j07hVmwWgflQZeA__&Key-Pair-Id=K3EI6M078Z3AC3",
                            "OCR",
                            ""
                        ]
                    ],
                    inputs=[input_image, task_dropdown, text_input],
                )
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Results")
                output_image = gr.Image(label="Image", type="pil")

    with gr.Tab(label="Video"):
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Video")
                video_task_dropdown = gr.Dropdown(
                    choices=["Object Detection", "Dense Region Caption"],
                    label="Video Task", value="Object Detection"
                )
                video_submit_btn = gr.Button(value="Process Video")
            with gr.Column():
                output_video = gr.Video(label="Video")

    def update_text_input(task):
        return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
                                           "Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
                                           "Region to Description"])

    task_dropdown.change(fn=update_text_input, inputs=task_dropdown, outputs=text_input)

    def process_image(image, task, text):
        task_mapping = {
            "Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
            "Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
            "More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
            "Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
            "Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox(image, result['<OD>']))),
            "Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox(image, result['<DENSE_REGION_CAPTION>']))),
            "Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox(image, result['<REGION_PROPOSAL>']))),
            "Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_polygons(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
            "Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_polygons(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
            "Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])), plot_bbox(image, convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])))),
            "Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
            "Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
            "OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
            "OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
        }

        if task in task_mapping:
            prompt, process_func = task_mapping[task]
            result = run_example(prompt, image, text)
            return process_func(result)
        else:
            return "", image

    submit_btn.click(fn=process_image, inputs=[input_img, task_dropdown, text_input], outputs=[output_text, output_image])
    video_submit_btn.click(fn=process_video, inputs=[input_video, video_task_dropdown], outputs=output_video)

demo.launch()