Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from unittest.mock import patch
|
| 3 |
+
import spaces
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
+
from transformers.dynamic_module_utils import get_imports
|
| 7 |
+
import torch
|
| 8 |
+
import requests
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
+
import random
|
| 11 |
+
import numpy as np
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import matplotlib.patches as patches
|
| 14 |
+
import cv2
|
| 15 |
+
import io
|
| 16 |
+
|
| 17 |
+
def workaround_fixed_get_imports(filename: str | os.PathLike) -> list[str]:
|
| 18 |
+
if not str(filename).endswith("/modeling_florence2.py"):
|
| 19 |
+
return get_imports(filename)
|
| 20 |
+
imports = get_imports(filename)
|
| 21 |
+
imports.remove("flash_attn")
|
| 22 |
+
return imports
|
| 23 |
+
|
| 24 |
+
with patch("transformers.dynamic_module_utils.get_imports", workaround_fixed_get_imports):
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True).to("cuda").eval()
|
| 26 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
| 27 |
+
|
| 28 |
+
colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red',
|
| 29 |
+
'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue']
|
| 30 |
+
|
| 31 |
+
def fig_to_pil(fig):
|
| 32 |
+
buf = io.BytesIO()
|
| 33 |
+
fig.savefig(buf, format='png')
|
| 34 |
+
buf.seek(0)
|
| 35 |
+
return Image.open(buf)
|
| 36 |
+
|
| 37 |
+
@spaces.GPU
|
| 38 |
+
def run_example(task_prompt, image, text_input=None):
|
| 39 |
+
if text_input is None:
|
| 40 |
+
prompt = task_prompt
|
| 41 |
+
else:
|
| 42 |
+
prompt = task_prompt + text_input
|
| 43 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
| 44 |
+
with torch.inference_mode():
|
| 45 |
+
generated_ids = model.generate(
|
| 46 |
+
input_ids=inputs["input_ids"],
|
| 47 |
+
pixel_values=inputs["pixel_values"],
|
| 48 |
+
max_new_tokens=1024,
|
| 49 |
+
early_stopping=False,
|
| 50 |
+
do_sample=False,
|
| 51 |
+
num_beams=3,
|
| 52 |
+
)
|
| 53 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 54 |
+
parsed_answer = processor.post_process_generation(
|
| 55 |
+
generated_text,
|
| 56 |
+
task=task_prompt,
|
| 57 |
+
image_size=(image.size[0], image.size[1])
|
| 58 |
+
)
|
| 59 |
+
return parsed_answer
|
| 60 |
+
|
| 61 |
+
def plot_bbox(image, data):
|
| 62 |
+
fig, ax = plt.subplots()
|
| 63 |
+
ax.imshow(image)
|
| 64 |
+
for bbox, label in zip(data['bboxes'], data['labels']):
|
| 65 |
+
x1, y1, x2, y2 = bbox
|
| 66 |
+
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
| 67 |
+
ax.add_patch(rect)
|
| 68 |
+
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='indigo', alpha=0.5))
|
| 69 |
+
ax.axis('off')
|
| 70 |
+
return fig_to_pil(fig)
|
| 71 |
+
|
| 72 |
+
def draw_polygons(image, prediction, fill_mask=False):
|
| 73 |
+
fig, ax = plt.subplots()
|
| 74 |
+
ax.imshow(image)
|
| 75 |
+
scale = 1
|
| 76 |
+
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
| 77 |
+
color = random.choice(colormap)
|
| 78 |
+
fill_color = random.choice(colormap) if fill_mask else None
|
| 79 |
+
for _polygon in polygons:
|
| 80 |
+
_polygon = np.array(_polygon).reshape(-1, 2)
|
| 81 |
+
if _polygon.shape[0] < 3:
|
| 82 |
+
print('Invalid polygon:', _polygon)
|
| 83 |
+
continue
|
| 84 |
+
_polygon = (_polygon * scale).reshape(-1).tolist()
|
| 85 |
+
if len(_polygon) % 2 != 0:
|
| 86 |
+
print('Invalid polygon:', _polygon)
|
| 87 |
+
continue
|
| 88 |
+
polygon_points = np.array(_polygon).reshape(-1, 2)
|
| 89 |
+
if fill_mask:
|
| 90 |
+
polygon = patches.Polygon(polygon_points, edgecolor=color, facecolor=fill_color, linewidth=2)
|
| 91 |
+
else:
|
| 92 |
+
polygon = patches.Polygon(polygon_points, edgecolor=color, fill=False, linewidth=2)
|
| 93 |
+
ax.add_patch(polygon)
|
| 94 |
+
plt.text(polygon_points[0, 0], polygon_points[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
|
| 95 |
+
ax.axis('off')
|
| 96 |
+
return fig_to_pil(fig)
|
| 97 |
+
|
| 98 |
+
def draw_ocr_bboxes(image, prediction):
|
| 99 |
+
fig, ax = plt.subplots()
|
| 100 |
+
ax.imshow(image)
|
| 101 |
+
scale = 1
|
| 102 |
+
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
| 103 |
+
for box, label in zip(bboxes, labels):
|
| 104 |
+
color = random.choice(colormap)
|
| 105 |
+
new_box = (np.array(box) * scale).tolist()
|
| 106 |
+
polygon = patches.Polygon(new_box, edgecolor=color, fill=False, linewidth=3)
|
| 107 |
+
ax.add_patch(polygon)
|
| 108 |
+
plt.text(new_box[0], new_box[1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
|
| 109 |
+
ax.axis('off')
|
| 110 |
+
return fig_to_pil(fig)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@spaces.GPU(duration=120)
|
| 114 |
+
def process_video(input_video_path, task_prompt):
|
| 115 |
+
cap = cv2.VideoCapture(input_video_path)
|
| 116 |
+
if not cap.isOpened():
|
| 117 |
+
print("Error: Can't open the video file.")
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 121 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 122 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 123 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 124 |
+
out = cv2.VideoWriter("output_vid.mp4", fourcc, fps, (frame_width, frame_height))
|
| 125 |
+
|
| 126 |
+
while cap.isOpened():
|
| 127 |
+
ret, frame = cap.read()
|
| 128 |
+
if not ret:
|
| 129 |
+
break
|
| 130 |
+
|
| 131 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 132 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 133 |
+
|
| 134 |
+
result = run_example(task_prompt, pil_image)
|
| 135 |
+
|
| 136 |
+
if task_prompt == "<OD>":
|
| 137 |
+
processed_image = plot_bbox(pil_image, result['<OD>'])
|
| 138 |
+
elif task_prompt == "<DENSE_REGION_CAPTION>":
|
| 139 |
+
processed_image = plot_bbox(pil_image, result['<DENSE_REGION_CAPTION>'])
|
| 140 |
+
else:
|
| 141 |
+
processed_image = pil_image
|
| 142 |
+
|
| 143 |
+
processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGB2BGR)
|
| 144 |
+
out.write(processed_frame)
|
| 145 |
+
|
| 146 |
+
cap.release()
|
| 147 |
+
out.release()
|
| 148 |
+
cv2.destroyAllWindows()
|
| 149 |
+
return "output_vid.mp4"
|
| 150 |
+
|
| 151 |
+
css = """
|
| 152 |
+
#output {
|
| 153 |
+
min-height: 100px;
|
| 154 |
+
overflow: auto;
|
| 155 |
+
border: 1px solid #ccc;
|
| 156 |
+
}
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
with gr.Blocks(css=css) as demo:
|
| 160 |
+
gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>")
|
| 161 |
+
with gr.Tab(label="Image"):
|
| 162 |
+
with gr.Row():
|
| 163 |
+
with gr.Column():
|
| 164 |
+
input_img = gr.Image(label="Input Picture", type="pil")
|
| 165 |
+
task_radio = gr.Radio(
|
| 166 |
+
["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding",
|
| 167 |
+
"Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation",
|
| 168 |
+
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description",
|
| 169 |
+
"OCR", "OCR with Region"],
|
| 170 |
+
label="Task", value="Caption"
|
| 171 |
+
)
|
| 172 |
+
text_input = gr.Textbox(label="Text Input (is Optional)", visible=False)
|
| 173 |
+
submit_btn = gr.Button(value="Submit")
|
| 174 |
+
with gr.Column():
|
| 175 |
+
output_text = gr.Textbox(label="Results")
|
| 176 |
+
output_image = gr.Image(label="Image", type="pil")
|
| 177 |
+
|
| 178 |
+
with gr.Tab(label="Video"):
|
| 179 |
+
with gr.Row():
|
| 180 |
+
with gr.Column():
|
| 181 |
+
input_video = gr.Video(label="Video")
|
| 182 |
+
video_task_radio = gr.Radio(
|
| 183 |
+
["Object Detection", "Dense Region Caption"],
|
| 184 |
+
label="Video Task", value="Object Detection"
|
| 185 |
+
)
|
| 186 |
+
video_submit_btn = gr.Button(value="Process Video")
|
| 187 |
+
with gr.Column():
|
| 188 |
+
output_video = gr.Video(label="Video")
|
| 189 |
+
|
| 190 |
+
def update_text_input(task):
|
| 191 |
+
return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
|
| 192 |
+
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
|
| 193 |
+
"Region to Description"])
|
| 194 |
+
|
| 195 |
+
task_radio.change(fn=update_text_input, inputs=task_radio, outputs=text_input)
|
| 196 |
+
|
| 197 |
+
def process_image(image, task, text):
|
| 198 |
+
task_mapping = {
|
| 199 |
+
"Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
|
| 200 |
+
"Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
|
| 201 |
+
"More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
|
| 202 |
+
"Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
|
| 203 |
+
"Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox(image, result['<OD>']))),
|
| 204 |
+
"Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox(image, result['<DENSE_REGION_CAPTION>']))),
|
| 205 |
+
"Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox(image, result['<REGION_PROPOSAL>']))),
|
| 206 |
+
"Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_polygons(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
|
| 207 |
+
"Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_polygons(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
|
| 208 |
+
"Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])), plot_bbox(image, convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])))),
|
| 209 |
+
"Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
|
| 210 |
+
"Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
|
| 211 |
+
"OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
|
| 212 |
+
"OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
if task in task_mapping:
|
| 216 |
+
prompt, process_func = task_mapping[task]
|
| 217 |
+
result = run_example(prompt, image, text)
|
| 218 |
+
return process_func(result)
|
| 219 |
+
else:
|
| 220 |
+
return "", image
|
| 221 |
+
|
| 222 |
+
submit_btn.click(fn=process_image, inputs=[input_img, task_radio, text_input], outputs=[output_text, output_image])
|
| 223 |
+
video_submit_btn.click(fn=process_video, inputs=[input_video, video_task_radio], outputs=output_video)
|
| 224 |
+
|
| 225 |
+
demo.launch()
|