Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,344 Bytes
2efe949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
from unittest.mock import patch
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.dynamic_module_utils import get_imports
import torch
import requests
from PIL import Image, ImageDraw
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
import io
def workaround_fixed_get_imports(filename: str | os.PathLike) -> list[str]:
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
with patch("transformers.dynamic_module_utils.get_imports", workaround_fixed_get_imports):
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red',
'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
@spaces.GPU
def run_example(task_prompt, image, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
with torch.inference_mode():
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.size[0], image.size[1])
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='indigo', alpha=0.5))
ax.axis('off')
return fig_to_pil(fig)
def draw_polygons(image, prediction, fill_mask=False):
fig, ax = plt.subplots()
ax.imshow(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if _polygon.shape[0] < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if len(_polygon) % 2 != 0:
print('Invalid polygon:', _polygon)
continue
polygon_points = np.array(_polygon).reshape(-1, 2)
if fill_mask:
polygon = patches.Polygon(polygon_points, edgecolor=color, facecolor=fill_color, linewidth=2)
else:
polygon = patches.Polygon(polygon_points, edgecolor=color, fill=False, linewidth=2)
ax.add_patch(polygon)
plt.text(polygon_points[0, 0], polygon_points[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
ax.axis('off')
return fig_to_pil(fig)
def draw_ocr_bboxes(image, prediction):
fig, ax = plt.subplots()
ax.imshow(image)
scale = 1
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
polygon = patches.Polygon(new_box, edgecolor=color, fill=False, linewidth=3)
ax.add_patch(polygon)
plt.text(new_box[0], new_box[1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5))
ax.axis('off')
return fig_to_pil(fig)
@spaces.GPU(duration=120)
def process_video(input_video_path, task_prompt):
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
print("Error: Can't open the video file.")
return
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter("output_vid.mp4", fourcc, fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
result = run_example(task_prompt, pil_image)
if task_prompt == "<OD>":
processed_image = plot_bbox(pil_image, result['<OD>'])
elif task_prompt == "<DENSE_REGION_CAPTION>":
processed_image = plot_bbox(pil_image, result['<DENSE_REGION_CAPTION>'])
else:
processed_image = pil_image
processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGB2BGR)
out.write(processed_frame)
cap.release()
out.release()
cv2.destroyAllWindows()
return "output_vid.mp4"
css = """
#output {
min-height: 100px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>")
with gr.Tab(label="Image"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture", type="pil")
task_radio = gr.Radio(
["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding",
"Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation",
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description",
"OCR", "OCR with Region"],
label="Task", value="Caption"
)
text_input = gr.Textbox(label="Text Input (is Optional)", visible=False)
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Results")
output_image = gr.Image(label="Image", type="pil")
with gr.Tab(label="Video"):
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Video")
video_task_radio = gr.Radio(
["Object Detection", "Dense Region Caption"],
label="Video Task", value="Object Detection"
)
video_submit_btn = gr.Button(value="Process Video")
with gr.Column():
output_video = gr.Video(label="Video")
def update_text_input(task):
return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
"Region to Description"])
task_radio.change(fn=update_text_input, inputs=task_radio, outputs=text_input)
def process_image(image, task, text):
task_mapping = {
"Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
"Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
"More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
"Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
"Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox(image, result['<OD>']))),
"Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox(image, result['<DENSE_REGION_CAPTION>']))),
"Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox(image, result['<REGION_PROPOSAL>']))),
"Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_polygons(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
"Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_polygons(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
"Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])), plot_bbox(image, convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])))),
"Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
"Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
"OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
"OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
}
if task in task_mapping:
prompt, process_func = task_mapping[task]
result = run_example(prompt, image, text)
return process_func(result)
else:
return "", image
submit_btn.click(fn=process_image, inputs=[input_img, task_radio, text_input], outputs=[output_text, output_image])
video_submit_btn.click(fn=process_video, inputs=[input_video, video_task_radio], outputs=output_video)
demo.launch() |