File size: 3,149 Bytes
c627930
9e51870
397093f
9e51870
a4eced8
a15b17b
9e51870
c627930
 
 
 
9e51870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe967b9
 
9e51870
fe967b9
9e51870
 
 
 
 
fe967b9
 
 
 
9e51870
fe967b9
9e51870
 
c627930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e3bb4
9e51870
 
 
afcd5ad
08931c2
 
afcd5ad
a4eced8
afcd5ad
a4eced8
afcd5ad
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import whisper
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# from gradio import inputs  # Import the 'inputs' module from 'gradio'



Asr_model = whisper.load_model("base")
Asr_model.device

device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "ai4bharat/Airavata"

tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)


def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
    formatted_text = ""
    for message in messages:
        if message["role"] == "system":
            formatted_text += "<|system|>\n" + message["content"] + "\n"
        elif message["role"] == "user":
            formatted_text += "<|user|>\n" + message["content"] + "\n"
        elif message["role"] == "assistant":
            formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
        else:
            raise ValueError(
                "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
                    message["role"]
                )
            )
    formatted_text += "<|assistant|>\n"
    formatted_text = bos + formatted_text if add_bos else formatted_text
    return formatted_text

def inference(input_prompt, model, tokenizer):
    input_prompt = create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)

    encodings = tokenizer(input_prompt, padding=True, return_tensors="pt")
    encodings = encodings.to(device)

    with torch.inference_mode():  # Add missing import statement for torch.inference_mode()
        outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)

    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

    input_prompt = tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True)
    output_text = output_text[len(input_prompt):]

    return output_text


def transcribe(audio):
    
    #time.sleep(3)
    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decode the audio
    options = whisper.DecodingOptions()
    result = whisper.decode(model, mel, options)
    return result.text


def chat_interface(audio):
    message = transcribe(audio)
    outputs = inference(message, model, tokenizer)
    return outputs


gr.Interface(
    title="CAMAI - Centralized Actionable Multimodal Agri Assistant on Edge Intelligence for Farmers",
    fn=chat_interface,
    inputs=[
        gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file")
    ],

    outputs=[
        "textbox"
    ],
    theme="darkly"
).launch()