Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import os | |
from dataclasses import dataclass, field | |
import numpy as np | |
from omegaconf import II, MISSING, OmegaConf | |
from fairseq import utils | |
from fairseq.data import ( | |
Dictionary, | |
IdDataset, | |
MaskTokensDataset, | |
NestedDictionaryDataset, | |
NumelDataset, | |
NumSamplesDataset, | |
PrependTokenDataset, | |
RightPadDataset, | |
SortDataset, | |
TokenBlockDataset, | |
data_utils, | |
) | |
from fairseq.data.encoders.utils import get_whole_word_mask | |
from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.tasks import FairseqTask, register_task | |
from .language_modeling import SAMPLE_BREAK_MODE_CHOICES, SHORTEN_METHOD_CHOICES | |
logger = logging.getLogger(__name__) | |
class MaskedLMConfig(FairseqDataclass): | |
data: str = field( | |
default=MISSING, | |
metadata={ | |
"help": "colon separated path to data directories list, \ | |
will be iterated upon during epochs in round-robin manner" | |
}, | |
) | |
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( | |
default="none", | |
metadata={ | |
"help": 'If omitted or "none", fills each sample with tokens-per-sample ' | |
'tokens. If set to "complete", splits samples only at the end ' | |
"of sentence, but may include multiple sentences per sample. " | |
'"complete_doc" is similar but respects doc boundaries. ' | |
'If set to "eos", includes only one sentence per sample.' | |
}, | |
) | |
tokens_per_sample: int = field( | |
default=1024, | |
metadata={"help": "max number of tokens per sample for LM dataset"}, | |
) | |
mask_prob: float = field( | |
default=0.15, | |
metadata={"help": "probability of replacing a token with mask"}, | |
) | |
leave_unmasked_prob: float = field( | |
default=0.1, | |
metadata={"help": "probability that a masked token is unmasked"}, | |
) | |
random_token_prob: float = field( | |
default=0.1, | |
metadata={"help": "probability of replacing a token with a random token"}, | |
) | |
freq_weighted_replacement: bool = field( | |
default=False, | |
metadata={"help": "sample random replacement words based on word frequencies"}, | |
) | |
mask_whole_words: bool = field( | |
default=False, | |
metadata={"help": "mask whole words; you may also want to set --bpe"}, | |
) | |
mask_multiple_length: int = field( | |
default=1, | |
metadata={"help": "repeat the mask indices multiple times"}, | |
) | |
mask_stdev: float = field( | |
default=0.0, | |
metadata={"help": "stdev of the mask length"}, | |
) | |
shorten_method: SHORTEN_METHOD_CHOICES = field( | |
default="none", | |
metadata={ | |
"help": "if not none, shorten sequences that exceed --tokens-per-sample" | |
}, | |
) | |
shorten_data_split_list: str = field( | |
default="", | |
metadata={ | |
"help": "comma-separated list of dataset splits to apply shortening to, " | |
'e.g., "train,valid" (default: all dataset splits)' | |
}, | |
) | |
seed: int = II("common.seed") | |
include_target_tokens: bool = field( | |
default=False, | |
metadata={ | |
"help": "include target tokens in model input. this is used for data2vec" | |
}, | |
) | |
class MaskedLMTask(FairseqTask): | |
cfg: MaskedLMConfig | |
"""Task for training masked language models (e.g., BERT, RoBERTa).""" | |
def __init__(self, cfg: MaskedLMConfig, dictionary): | |
super().__init__(cfg) | |
self.dictionary = dictionary | |
# add mask token | |
self.mask_idx = dictionary.add_symbol("<mask>") | |
def setup_task(cls, cfg: MaskedLMConfig, **kwargs): | |
paths = utils.split_paths(cfg.data) | |
assert len(paths) > 0 | |
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
logger.info("dictionary: {} types".format(len(dictionary))) | |
return cls(cfg, dictionary) | |
def _load_dataset_split(self, split, epoch, combine): | |
paths = utils.split_paths(self.cfg.data) | |
assert len(paths) > 0 | |
data_path = paths[(epoch - 1) % len(paths)] | |
split_path = os.path.join(data_path, split) | |
dataset = data_utils.load_indexed_dataset( | |
split_path, | |
self.source_dictionary, | |
combine=combine, | |
) | |
if dataset is None: | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, split_path) | |
) | |
dataset = maybe_shorten_dataset( | |
dataset, | |
split, | |
self.cfg.shorten_data_split_list, | |
self.cfg.shorten_method, | |
self.cfg.tokens_per_sample, | |
self.cfg.seed, | |
) | |
# create continuous blocks of tokens | |
dataset = TokenBlockDataset( | |
dataset, | |
dataset.sizes, | |
self.cfg.tokens_per_sample - 1, # one less for <s> | |
pad=self.source_dictionary.pad(), | |
eos=self.source_dictionary.eos(), | |
break_mode=self.cfg.sample_break_mode, | |
) | |
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
return PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
dataset = self._load_dataset_split(split, epoch, combine) | |
# create masked input and targets | |
mask_whole_words = ( | |
get_whole_word_mask(self.args, self.source_dictionary) | |
if self.cfg.mask_whole_words | |
else None | |
) | |
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( | |
dataset, | |
self.source_dictionary, | |
pad_idx=self.source_dictionary.pad(), | |
mask_idx=self.mask_idx, | |
seed=self.cfg.seed, | |
mask_prob=self.cfg.mask_prob, | |
leave_unmasked_prob=self.cfg.leave_unmasked_prob, | |
random_token_prob=self.cfg.random_token_prob, | |
freq_weighted_replacement=self.cfg.freq_weighted_replacement, | |
mask_whole_words=mask_whole_words, | |
mask_multiple_length=self.cfg.mask_multiple_length, | |
mask_stdev=self.cfg.mask_stdev, | |
) | |
with data_utils.numpy_seed(self.cfg.seed): | |
shuffle = np.random.permutation(len(src_dataset)) | |
target_dataset = RightPadDataset( | |
tgt_dataset, | |
pad_idx=self.source_dictionary.pad(), | |
) | |
input_dict = { | |
"src_tokens": RightPadDataset( | |
src_dataset, | |
pad_idx=self.source_dictionary.pad(), | |
), | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
} | |
if self.cfg.include_target_tokens: | |
input_dict["target_tokens"] = target_dataset | |
self.datasets[split] = SortDataset( | |
NestedDictionaryDataset( | |
{ | |
"id": IdDataset(), | |
"net_input": input_dict, | |
"target": target_dataset, | |
"nsentences": NumSamplesDataset(), | |
"ntokens": NumelDataset(src_dataset, reduce=True), | |
}, | |
sizes=[src_dataset.sizes], | |
), | |
sort_order=[ | |
shuffle, | |
src_dataset.sizes, | |
], | |
) | |
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): | |
src_dataset = RightPadDataset( | |
TokenBlockDataset( | |
src_tokens, | |
src_lengths, | |
self.cfg.tokens_per_sample - 1, # one less for <s> | |
pad=self.source_dictionary.pad(), | |
eos=self.source_dictionary.eos(), | |
break_mode="eos", | |
), | |
pad_idx=self.source_dictionary.pad(), | |
) | |
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) | |
src_dataset = NestedDictionaryDataset( | |
{ | |
"id": IdDataset(), | |
"net_input": { | |
"src_tokens": src_dataset, | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
}, | |
}, | |
sizes=src_lengths, | |
) | |
if sort: | |
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) | |
return src_dataset | |
def source_dictionary(self): | |
return self.dictionary | |
def target_dictionary(self): | |
return self.dictionary | |