File size: 9,017 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
from dataclasses import dataclass, field

import numpy as np
from omegaconf import II, MISSING, OmegaConf

from fairseq import utils
from fairseq.data import (
    Dictionary,
    IdDataset,
    MaskTokensDataset,
    NestedDictionaryDataset,
    NumelDataset,
    NumSamplesDataset,
    PrependTokenDataset,
    RightPadDataset,
    SortDataset,
    TokenBlockDataset,
    data_utils,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task

from .language_modeling import SAMPLE_BREAK_MODE_CHOICES, SHORTEN_METHOD_CHOICES

logger = logging.getLogger(__name__)


@dataclass
class MaskedLMConfig(FairseqDataclass):
    data: str = field(
        default=MISSING,
        metadata={
            "help": "colon separated path to data directories list, \
                            will be iterated upon during epochs in round-robin manner"
        },
    )
    sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field(
        default="none",
        metadata={
            "help": 'If omitted or "none", fills each sample with tokens-per-sample '
            'tokens. If set to "complete", splits samples only at the end '
            "of sentence, but may include multiple sentences per sample. "
            '"complete_doc" is similar but respects doc boundaries. '
            'If set to "eos", includes only one sentence per sample.'
        },
    )
    tokens_per_sample: int = field(
        default=1024,
        metadata={"help": "max number of tokens per sample for LM dataset"},
    )
    mask_prob: float = field(
        default=0.15,
        metadata={"help": "probability of replacing a token with mask"},
    )
    leave_unmasked_prob: float = field(
        default=0.1,
        metadata={"help": "probability that a masked token is unmasked"},
    )
    random_token_prob: float = field(
        default=0.1,
        metadata={"help": "probability of replacing a token with a random token"},
    )
    freq_weighted_replacement: bool = field(
        default=False,
        metadata={"help": "sample random replacement words based on word frequencies"},
    )
    mask_whole_words: bool = field(
        default=False,
        metadata={"help": "mask whole words; you may also want to set --bpe"},
    )
    mask_multiple_length: int = field(
        default=1,
        metadata={"help": "repeat the mask indices multiple times"},
    )
    mask_stdev: float = field(
        default=0.0,
        metadata={"help": "stdev of the mask length"},
    )
    shorten_method: SHORTEN_METHOD_CHOICES = field(
        default="none",
        metadata={
            "help": "if not none, shorten sequences that exceed --tokens-per-sample"
        },
    )
    shorten_data_split_list: str = field(
        default="",
        metadata={
            "help": "comma-separated list of dataset splits to apply shortening to, "
            'e.g., "train,valid" (default: all dataset splits)'
        },
    )
    seed: int = II("common.seed")

    include_target_tokens: bool = field(
        default=False,
        metadata={
            "help": "include target tokens in model input. this is used for data2vec"
        },
    )


@register_task("masked_lm", dataclass=MaskedLMConfig)
class MaskedLMTask(FairseqTask):

    cfg: MaskedLMConfig

    """Task for training masked language models (e.g., BERT, RoBERTa)."""

    def __init__(self, cfg: MaskedLMConfig, dictionary):
        super().__init__(cfg)
        self.dictionary = dictionary

        # add mask token
        self.mask_idx = dictionary.add_symbol("<mask>")

    @classmethod
    def setup_task(cls, cfg: MaskedLMConfig, **kwargs):
        paths = utils.split_paths(cfg.data)
        assert len(paths) > 0
        dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
        logger.info("dictionary: {} types".format(len(dictionary)))
        return cls(cfg, dictionary)

    def _load_dataset_split(self, split, epoch, combine):
        paths = utils.split_paths(self.cfg.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]
        split_path = os.path.join(data_path, split)

        dataset = data_utils.load_indexed_dataset(
            split_path,
            self.source_dictionary,
            combine=combine,
        )
        if dataset is None:
            raise FileNotFoundError(
                "Dataset not found: {} ({})".format(split, split_path)
            )

        dataset = maybe_shorten_dataset(
            dataset,
            split,
            self.cfg.shorten_data_split_list,
            self.cfg.shorten_method,
            self.cfg.tokens_per_sample,
            self.cfg.seed,
        )

        # create continuous blocks of tokens
        dataset = TokenBlockDataset(
            dataset,
            dataset.sizes,
            self.cfg.tokens_per_sample - 1,  # one less for <s>
            pad=self.source_dictionary.pad(),
            eos=self.source_dictionary.eos(),
            break_mode=self.cfg.sample_break_mode,
        )
        logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))

        # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
        return PrependTokenDataset(dataset, self.source_dictionary.bos())

    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        dataset = self._load_dataset_split(split, epoch, combine)

        # create masked input and targets
        mask_whole_words = (
            get_whole_word_mask(self.args, self.source_dictionary)
            if self.cfg.mask_whole_words
            else None
        )

        src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
            dataset,
            self.source_dictionary,
            pad_idx=self.source_dictionary.pad(),
            mask_idx=self.mask_idx,
            seed=self.cfg.seed,
            mask_prob=self.cfg.mask_prob,
            leave_unmasked_prob=self.cfg.leave_unmasked_prob,
            random_token_prob=self.cfg.random_token_prob,
            freq_weighted_replacement=self.cfg.freq_weighted_replacement,
            mask_whole_words=mask_whole_words,
            mask_multiple_length=self.cfg.mask_multiple_length,
            mask_stdev=self.cfg.mask_stdev,
        )

        with data_utils.numpy_seed(self.cfg.seed):
            shuffle = np.random.permutation(len(src_dataset))

        target_dataset = RightPadDataset(
            tgt_dataset,
            pad_idx=self.source_dictionary.pad(),
        )

        input_dict = {
            "src_tokens": RightPadDataset(
                src_dataset,
                pad_idx=self.source_dictionary.pad(),
            ),
            "src_lengths": NumelDataset(src_dataset, reduce=False),
        }
        if self.cfg.include_target_tokens:
            input_dict["target_tokens"] = target_dataset

        self.datasets[split] = SortDataset(
            NestedDictionaryDataset(
                {
                    "id": IdDataset(),
                    "net_input": input_dict,
                    "target": target_dataset,
                    "nsentences": NumSamplesDataset(),
                    "ntokens": NumelDataset(src_dataset, reduce=True),
                },
                sizes=[src_dataset.sizes],
            ),
            sort_order=[
                shuffle,
                src_dataset.sizes,
            ],
        )

    def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
        src_dataset = RightPadDataset(
            TokenBlockDataset(
                src_tokens,
                src_lengths,
                self.cfg.tokens_per_sample - 1,  # one less for <s>
                pad=self.source_dictionary.pad(),
                eos=self.source_dictionary.eos(),
                break_mode="eos",
            ),
            pad_idx=self.source_dictionary.pad(),
        )
        src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos())
        src_dataset = NestedDictionaryDataset(
            {
                "id": IdDataset(),
                "net_input": {
                    "src_tokens": src_dataset,
                    "src_lengths": NumelDataset(src_dataset, reduce=False),
                },
            },
            sizes=src_lengths,
        )
        if sort:
            src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
        return src_dataset

    @property
    def source_dictionary(self):
        return self.dictionary

    @property
    def target_dictionary(self):
        return self.dictionary