Spaces:
Runtime error
Runtime error
HF-SillyTavern-Extras
/
modules
/voice_conversion
/fairseq
/data
/multilingual
/multilingual_data_manager.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import itertools | |
import json | |
import logging | |
import math | |
import os | |
from collections import OrderedDict, defaultdict | |
from argparse import ArgumentError | |
from fairseq import utils | |
from fairseq.data import ( | |
AppendTokenDataset, | |
ConcatDataset, | |
Dictionary, | |
LanguagePairDataset, | |
PrependTokenDataset, | |
SampledMultiDataset, | |
SampledMultiEpochDataset, | |
StripTokenDataset, | |
TransformEosLangPairDataset, | |
TruncateDataset, | |
data_utils, | |
indexed_dataset, | |
) | |
from fairseq.data.multilingual.multilingual_utils import ( | |
EncoderLangtok, | |
LangTokSpec, | |
LangTokStyle, | |
augment_dictionary, | |
get_lang_tok, | |
) | |
from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat | |
from fairseq.file_io import PathManager | |
from fairseq.utils import FileContentsAction, csv_str_list, eval_str_dict | |
logger = logging.getLogger(__name__) | |
SRC_DICT_NAME = "src" | |
TGT_DICT_NAME = "tgt" | |
def _lang_id(dic: Dictionary, lang: str): | |
"""Return language ID index.""" | |
idx = dic.index(lang) | |
assert idx != dic.unk_index, "cannot find language ID for lang {}".format(lang) | |
return idx | |
def load_sampling_weights(from_file): | |
with open(from_file) as f: | |
weights = json.load(f) | |
return weights | |
class MultilingualDatasetManager(object): | |
def __init__(self, args, lang_pairs, langs, dicts, sampling_method): | |
super().__init__() | |
self.args = args | |
self.seed = args.seed | |
self.lang_pairs = lang_pairs | |
self.extra_lang_pairs = ( | |
list({p for _, v in args.extra_lang_pairs.items() for p in v.split(",")}) | |
if args.extra_lang_pairs | |
else [] | |
) | |
self.src_langs = { | |
p.split("-")[0] for p in args.lang_pairs + self.extra_lang_pairs | |
} | |
self.tgt_langs = { | |
p.split("-")[1] for p in args.lang_pairs + self.extra_lang_pairs | |
} | |
self.langs = langs | |
self.dicts = dicts | |
self.lang_dict = self.create_lang_dictionary(self.langs) | |
self.sampling_method = sampling_method | |
self.sampling_scheduler = None | |
self._has_sharded_data = False | |
self._num_shards_dict = {} | |
self._training_data_sizes = defaultdict(lambda: {}) | |
def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method): | |
return MultilingualDatasetManager( | |
args, lang_pairs, langs, dicts, sampling_method | |
) | |
def add_args(parser): | |
parser.add_argument( | |
"data", | |
help="colon separated path to data directories list, \ | |
will be iterated upon during epochs in round-robin manner", | |
action=FileContentsAction, | |
) | |
parser.add_argument( | |
"--langs", | |
default=None, | |
type=csv_str_list, | |
help="a list of languages comma sperated languages which can appear in lang-pairs; " | |
"note that the ordering determines language token IDs", | |
) | |
parser.add_argument( | |
"--lang-dict", | |
default=None, | |
type=str, | |
help="an external file which contains a list of " | |
"languages which can appear in lang-pairs; " | |
"note that the ordering determines language token IDs; " | |
"--langs and --lang-dict are two exclusive options", | |
) | |
parser.add_argument( | |
"--source-dict", | |
default=None, | |
type=str, | |
help="path to source dictionary; if specified it will override per language dictionary loading", | |
) | |
parser.add_argument( | |
"--target-dict", | |
default=None, | |
type=str, | |
help="path to target dictionary; if specified it will override per language dictionary loading", | |
) | |
parser.add_argument( | |
"--lang-tok-style", | |
default=LangTokStyle.multilingual.value, | |
type=str, | |
choices=[LangTokStyle.multilingual.value, LangTokStyle.mbart.value], | |
help="language token styles", | |
) | |
parser.add_argument( | |
"--load-alignments", | |
action="store_true", | |
help="load the binarized alignments", | |
) | |
parser.add_argument( | |
"--left-pad-source", | |
default="True", | |
type=str, | |
metavar="BOOL", | |
help="pad the source on the left", | |
) | |
parser.add_argument( | |
"--left-pad-target", | |
default="False", | |
type=str, | |
metavar="BOOL", | |
help="pad the target on the left", | |
) | |
try: | |
parser.add_argument( | |
"--max-source-positions", | |
default=1024, | |
type=int, | |
metavar="N", | |
help="max number of tokens in the source sequence", | |
) | |
parser.add_argument( | |
"--max-target-positions", | |
default=1024, | |
type=int, | |
metavar="N", | |
help="max number of tokens in the target sequence", | |
) | |
except ArgumentError: | |
# this might have already been defined. Once we transition this to hydra it should be fine to add it here. | |
pass | |
parser.add_argument( | |
"--upsample-primary", | |
default=1, | |
type=int, | |
help="amount to upsample primary dataset", | |
) | |
parser.add_argument( | |
"--truncate-source", | |
action="store_true", | |
default=False, | |
help="truncate source to max-source-positions", | |
) | |
parser.add_argument( | |
"--encoder-langtok", | |
default=None, | |
type=str, | |
choices=[EncoderLangtok.src.value, EncoderLangtok.tgt.value], | |
metavar="SRCTGT", | |
help="prepend to the beginning of source sentence the source or target " | |
"language token. (src/tgt)", | |
) | |
parser.add_argument( | |
"--decoder-langtok", | |
action="store_true", | |
help="prepend to the beginning of target sentence the target language token", | |
) | |
parser.add_argument( | |
"--lang-tok-replacing-bos-eos", action="store_true", default=False | |
) | |
parser.add_argument( | |
"--enable-lang-ids", | |
default=False, | |
action="store_true", | |
help="whether to include language IDs in samples", | |
) | |
parser.add_argument( | |
"--enable-reservsed-directions-shared-datasets", | |
default=False, | |
action="store_true", | |
help="whether to allow datasets be used in reversed directions", | |
) | |
parser.add_argument( | |
"--extra-data", | |
help='a dictionary of data name to this path, \ | |
e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}', | |
type=lambda uf: eval_str_dict(uf, type=str), | |
default=None, | |
) | |
parser.add_argument( | |
"--extra-lang-pairs", | |
help='a dictionary of data name to the language pairs they serve, \ | |
e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}', | |
type=lambda uf: eval_str_dict(uf, type=str), | |
default=None, | |
) | |
parser.add_argument( | |
"--fixed-dictionary", | |
help="Fixed dictionary to use with model path", | |
default=None, | |
type=str, | |
) | |
parser.add_argument( | |
"--langtoks-specs", | |
help='a list of comma separated data types that a set of language tokens to be specialized for, \ | |
e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \ | |
distinguish languages in different training data types. If not specified, default language \ | |
tokens per languages will be added', | |
default=LangTokSpec.main.value, | |
type=csv_str_list, | |
) | |
parser.add_argument( | |
"--langtoks", | |
help='a dictionary of how to add language tokens, \ | |
e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \ | |
("src", "tgt")}, or {"mined": ("src.mined", "tgt")}', | |
default=None, | |
type=lambda uf: eval_str_dict(uf, type=str), | |
) | |
parser.add_argument( | |
"--sampling-weights-from-file", | |
help='a file contain a python dictionary of how to sample data sets, \ | |
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ | |
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', | |
default=None, | |
type=str, | |
) | |
parser.add_argument( | |
"--sampling-weights", | |
help='a dictionary of how to sample data sets, \ | |
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ | |
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', | |
default=None, | |
type=lambda uf: eval_str_dict(uf, type=str), | |
) | |
parser.add_argument( | |
"--virtual-epoch-size", | |
default=None, | |
type=int, | |
help="virtual epoch size to speed up data loading", | |
) | |
parser.add_argument( | |
"--virtual-data-size", | |
default=None, | |
type=int, | |
help="virtual data size of the whole joint dataset to speed" | |
"up data loading and have specific dynamic sampling strategy interval", | |
) | |
def load_langs(cls, args, **kwargs): | |
if args.lang_dict and args.langs: | |
raise ValueError("--langs and --lang-dict can not both be specified") | |
if args.lang_dict is None and args.langs is None: | |
logger.warning( | |
"External language dictionary is not provided; " | |
"use lang-pairs to infer the set of supported languages. " | |
"The language ordering is not stable which might cause " | |
"misalignment in pretraining and finetuning." | |
) | |
# infer from lang_pairs as it is | |
langs = list( | |
{x for lang_pair in args.lang_pairs for x in lang_pair.split("-")} | |
) | |
langs = sorted(langs) | |
logger.info(f"inferred language list: {langs}") | |
elif args.lang_dict: | |
with open( | |
PathManager.get_local_path(args.lang_dict), "r", encoding="utf-8" | |
) as f: | |
langs = [lang.strip() for lang in f.readlines() if lang.strip()] | |
logger.info( | |
f"loaded language list from {args.lang_dict} as they are ordered in file" | |
) | |
elif args.langs: | |
langs = args.langs | |
logger.info( | |
f"parsed the language list as they are ordered in the option: {langs}" | |
) | |
return langs | |
def has_sharded_data(self, split): | |
return self._has_sharded_data and split == getattr( | |
self.args, "train_subset", None | |
) | |
def _shared_collater(self): | |
return not (self.args.extra_data and "mono_dae" in self.args.extra_data) and ( | |
not self.args.lang_tok_replacing_bos_eos | |
) | |
def estimate_global_pass_epoch(self, epoch): | |
if self.args.virtual_epoch_size is None or self.args.virtual_data_size is None: | |
return None | |
# one epoch more for remaining data in each shard | |
virtual_epochs_per_shard = math.ceil( | |
self.args.virtual_data_size / self.args.virtual_epoch_size | |
) | |
# note that fairseq epoch / shard_epoch starts from 1 | |
shard_epoch = (epoch - 1) // virtual_epochs_per_shard + 1 | |
return shard_epoch | |
def prepare(cls, load_dictionary, args, **kargs): | |
args.left_pad_source = utils.eval_bool(args.left_pad_source) | |
args.left_pad_target = utils.eval_bool(args.left_pad_target) | |
if not hasattr(args, "shuffle_instance"): | |
args.shuffle_instance = False | |
if args.langtoks is None: | |
args.langtoks = {} | |
if "main" not in args.langtoks: | |
src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None | |
tgt_langtok_spec = "tgt" if args.decoder_langtok else None | |
args.langtoks["main"] = (src_langtok_spec, tgt_langtok_spec) | |
def check_langs(langs, pairs): | |
messages = [] | |
for src, tgt in pairs: | |
if src not in langs or tgt not in langs: | |
messages.append( | |
f"language pair {src}-{tgt} contains languages " | |
"that are not in the language dictionary" | |
) | |
if len(messages) > 0: | |
raise ValueError(" ".join(messages) + f"; langs: {langs}") | |
if args.lang_pairs is None: | |
raise ValueError( | |
"--lang-pairs is required. List all the language pairs in the training objective." | |
) | |
if isinstance(args.lang_pairs, str): | |
args.lang_pairs = args.lang_pairs.split(",") | |
if args.source_lang is not None or args.target_lang is not None: | |
training = False | |
else: | |
training = True | |
language_list = cls.load_langs(args, **kargs) | |
check_langs( | |
language_list, | |
( | |
[p.split("-") for p in args.lang_pairs] | |
if training | |
else [(args.source_lang, args.target_lang)] | |
), | |
) | |
def load_dictionary_and_postproc(path): | |
d = load_dictionary(path) | |
augment_dictionary( | |
dictionary=d, | |
language_list=language_list, | |
lang_tok_style=args.lang_tok_style, | |
langtoks_specs=args.langtoks_specs, | |
extra_data=args.extra_data, | |
) | |
return d | |
dicts = cls.load_all_dictionaries( | |
args, language_list, load_dictionary_and_postproc, training | |
) | |
return language_list, dicts, training | |
def load_all_dictionaries(cls, args, language_list, load_dictionary, training): | |
dicts = OrderedDict() | |
if args.source_dict is not None: | |
dicts[SRC_DICT_NAME] = load_dictionary(args.source_dict) | |
if args.target_dict is not None: | |
dicts[TGT_DICT_NAME] = load_dictionary(args.target_dict) | |
if training: | |
extra_lang_pairs = ( | |
list( | |
{p for _, v in args.extra_lang_pairs.items() for p in v.split(",")} | |
) | |
if args.extra_lang_pairs | |
else [] | |
) | |
src_langs_to_load_dicts = sorted( | |
{p.split("-")[0] for p in (args.lang_pairs + extra_lang_pairs)} | |
) | |
tgt_langs_to_load_dicts = sorted( | |
{p.split("-")[1] for p in (args.lang_pairs + extra_lang_pairs)} | |
) | |
else: | |
src_langs_to_load_dicts = [args.source_lang] | |
tgt_langs_to_load_dicts = [args.target_lang] | |
paths = utils.split_paths(args.data) | |
assert len(paths) > 0 | |
def load_dicts(langs_to_load_dicts): | |
for lang in langs_to_load_dicts: | |
dicts[lang] = load_dictionary( | |
os.path.join(paths[0], "dict.{}.txt".format(lang)) | |
) | |
if len(dicts) > 0: | |
dict0 = next(iter(dicts.values())) | |
assert dicts[lang].pad() == dict0.pad() | |
assert dicts[lang].eos() == dict0.eos() | |
assert dicts[lang].unk() == dict0.unk() | |
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang]))) | |
if args.fixed_dictionary is not None: | |
fixed_dict = load_dictionary(args.fixed_dictionary) | |
dicts = { | |
lang: fixed_dict | |
for lang in src_langs_to_load_dicts + tgt_langs_to_load_dicts | |
} | |
else: | |
if args.source_dict is None: | |
load_dicts(src_langs_to_load_dicts) | |
if args.target_dict is None: | |
load_dicts(tgt_langs_to_load_dicts) | |
return dicts | |
def get_source_dictionary(self, lang): | |
if self.args.source_dict is not None: | |
return self.dicts[SRC_DICT_NAME] | |
else: | |
return self.dicts[lang] | |
def get_target_dictionary(self, lang): | |
if self.args.target_dict is not None: | |
return self.dicts[TGT_DICT_NAME] | |
else: | |
return self.dicts[lang] | |
def create_lang_dictionary(cls, langs): | |
unk = "<unk>" | |
# hack to remove symbols other than unk as they are not needed by lang dict | |
lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk) | |
for lang in langs: | |
lang_dict.add_symbol(lang) | |
return lang_dict | |
def get_langtok_index(cls, lang_tok, dic): | |
idx = dic.index(lang_tok) | |
assert ( | |
idx != dic.unk_index | |
), "cannot find language token {} in the dictionary".format(lang_tok) | |
return idx | |
def get_encoder_langtok(self, src_lang, tgt_lang, spec=None): | |
if spec is None: | |
return None | |
if spec and spec.startswith("src"): | |
if src_lang is None: | |
return None | |
langtok = get_lang_tok( | |
lang=src_lang, lang_tok_style=self.args.lang_tok_style, spec=spec | |
) | |
else: | |
if tgt_lang is None: | |
return None | |
langtok = get_lang_tok( | |
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec | |
) | |
return self.get_langtok_index( | |
langtok, | |
self.get_source_dictionary(src_lang) | |
if src_lang | |
else self.get_target_dictionary(tgt_lang), | |
) | |
def get_decoder_langtok(self, tgt_lang, spec=None): | |
if spec is None: | |
return None | |
langtok = get_lang_tok( | |
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec | |
) | |
return self.get_langtok_index(langtok, self.get_target_dictionary(tgt_lang)) | |
def load_data(cls, path, vdict, impl): | |
dataset = data_utils.load_indexed_dataset(path, vdict, impl) | |
return dataset | |
def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl): | |
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) | |
return indexed_dataset.dataset_exists(filename, impl=dataset_impl) | |
def load_lang_dataset( | |
self, | |
data_path, | |
split, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
dataset_impl, | |
upsample_primary, | |
max_source_positions, | |
prepend_bos=False, | |
load_alignments=False, | |
truncate_source=False, | |
): | |
src_datasets = [] | |
tgt_datasets = [] | |
for k in itertools.count(): | |
split_k = split + (str(k) if k > 0 else "") | |
# infer langcode | |
if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl): | |
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) | |
elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl): | |
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) | |
else: | |
if k > 0: | |
break | |
else: | |
logger.error( | |
f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}" | |
) | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, data_path) | |
) | |
src_dataset = self.load_data(prefix + src, src_dict, dataset_impl) | |
if truncate_source: | |
src_dataset = AppendTokenDataset( | |
TruncateDataset( | |
StripTokenDataset(src_dataset, src_dict.eos()), | |
max_source_positions - 1, | |
), | |
src_dict.eos(), | |
) | |
src_datasets.append(src_dataset) | |
tgt_datasets.append(self.load_data(prefix + tgt, tgt_dict, dataset_impl)) | |
logger.info( | |
"{} {} {}-{} {} examples".format( | |
data_path, split_k, src, tgt, len(src_datasets[-1]) | |
) | |
) | |
if not combine: | |
break | |
assert len(src_datasets) == len(tgt_datasets) | |
if len(src_datasets) == 1: | |
src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] | |
else: | |
sample_ratios = [1] * len(src_datasets) | |
sample_ratios[0] = upsample_primary | |
src_dataset = ConcatDataset(src_datasets, sample_ratios) | |
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) | |
if prepend_bos: | |
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") | |
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) | |
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) | |
align_dataset = None | |
if load_alignments: | |
align_path = os.path.join( | |
data_path, "{}.align.{}-{}".format(split, src, tgt) | |
) | |
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): | |
align_dataset = data_utils.load_indexed_dataset( | |
align_path, None, dataset_impl | |
) | |
return src_dataset, tgt_dataset, align_dataset | |
def load_langpair_dataset( | |
self, | |
data_path, | |
split, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
dataset_impl, | |
upsample_primary, | |
left_pad_source, | |
left_pad_target, | |
max_source_positions, | |
max_target_positions, | |
prepend_bos=False, | |
load_alignments=False, | |
truncate_source=False, | |
src_dataset_transform_func=lambda dataset: dataset, | |
tgt_dataset_transform_func=lambda dataset: dataset, | |
src_lang_id=None, | |
tgt_lang_id=None, | |
langpairs_sharing_datasets=None, | |
): | |
norm_direction = "-".join(sorted([src, tgt])) | |
if langpairs_sharing_datasets is not None: | |
src_dataset = langpairs_sharing_datasets.get( | |
(data_path, split, norm_direction, src), "NotInCache" | |
) | |
tgt_dataset = langpairs_sharing_datasets.get( | |
(data_path, split, norm_direction, tgt), "NotInCache" | |
) | |
align_dataset = langpairs_sharing_datasets.get( | |
(data_path, split, norm_direction, src, tgt), "NotInCache" | |
) | |
# a hack: any one is not in cache, we need to reload them | |
if ( | |
langpairs_sharing_datasets is None | |
or src_dataset == "NotInCache" | |
or tgt_dataset == "NotInCache" | |
or align_dataset == "NotInCache" | |
or split != getattr(self.args, "train_subset", None) | |
): | |
# source and target datasets can be reused in reversed directions to save memory | |
# reversed directions of valid and test data will not share source and target datasets | |
src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset( | |
data_path, | |
split, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
dataset_impl, | |
upsample_primary, | |
max_source_positions=max_source_positions, | |
prepend_bos=prepend_bos, | |
load_alignments=load_alignments, | |
truncate_source=truncate_source, | |
) | |
src_dataset = src_dataset_transform_func(src_dataset) | |
tgt_dataset = tgt_dataset_transform_func(tgt_dataset) | |
if langpairs_sharing_datasets is not None: | |
langpairs_sharing_datasets[ | |
(data_path, split, norm_direction, src) | |
] = src_dataset | |
langpairs_sharing_datasets[ | |
(data_path, split, norm_direction, tgt) | |
] = tgt_dataset | |
langpairs_sharing_datasets[ | |
(data_path, split, norm_direction, src, tgt) | |
] = align_dataset | |
if align_dataset is None: | |
# no align data so flag the reverse direction as well in sharing | |
langpairs_sharing_datasets[ | |
(data_path, split, norm_direction, tgt, src) | |
] = align_dataset | |
else: | |
logger.info( | |
f"Reusing source and target datasets of [{split}] {tgt}-{src} for reversed direction: " | |
f"[{split}] {src}-{tgt}: src length={len(src_dataset)}; tgt length={len(tgt_dataset)}" | |
) | |
return LanguagePairDataset( | |
src_dataset, | |
src_dataset.sizes, | |
src_dict, | |
tgt_dataset, | |
tgt_dataset.sizes if tgt_dataset is not None else None, | |
tgt_dict, | |
left_pad_source=left_pad_source, | |
left_pad_target=left_pad_target, | |
align_dataset=align_dataset, | |
src_lang_id=src_lang_id, | |
tgt_lang_id=tgt_lang_id, | |
) | |
def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None): | |
if self.args.lang_tok_replacing_bos_eos: | |
# it is handled by self.alter_dataset_langtok | |
# TODO: Unifiy with alter_dataset_langtok | |
return dataset | |
if spec is None: | |
return dataset | |
tok = self.get_encoder_langtok(src_lang, tgt_lang, spec) | |
if tok: | |
return PrependTokenDataset(dataset, tok) | |
return dataset | |
def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None): | |
if dataset is None: | |
# note that target dataset can be None during inference time | |
return None | |
if self.args.lang_tok_replacing_bos_eos: | |
# TODO: Unifiy with alter_dataset_langtok | |
# It is handled by self.alter_dataset_langtok. | |
# The complication in self.alter_dataset_langtok | |
# makes a unified framework difficult. | |
return dataset | |
# if not self.args.decoder_langtok: | |
if not spec: | |
return dataset | |
tok = self.get_decoder_langtok(target_lang, spec) | |
if tok: | |
return PrependTokenDataset(dataset, tok) | |
return dataset | |
def alter_dataset_langtok( | |
self, | |
lang_pair_dataset, | |
src_eos=None, | |
src_lang=None, | |
tgt_eos=None, | |
tgt_lang=None, | |
src_langtok_spec=None, | |
tgt_langtok_spec=None, | |
): | |
if src_langtok_spec is None and tgt_langtok_spec is None: | |
return lang_pair_dataset | |
new_src_eos = None | |
if ( | |
src_langtok_spec is not None | |
and src_eos is not None | |
and (src_lang is not None or tgt_lang is not None) | |
): | |
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec) | |
else: | |
src_eos = None | |
new_tgt_bos = None | |
if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None: | |
new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec) | |
else: | |
tgt_eos = None | |
return TransformEosLangPairDataset( | |
lang_pair_dataset, | |
src_eos=src_eos, | |
new_src_eos=new_src_eos, | |
tgt_bos=tgt_eos, | |
new_tgt_bos=new_tgt_bos, | |
) | |
def load_a_dataset( | |
self, | |
split, | |
data_path, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
prepend_bos=False, | |
langpairs_sharing_datasets=None, | |
data_category=None, | |
**extra_kwargs, | |
): | |
dataset_impl = self.args.dataset_impl | |
upsample_primary = self.args.upsample_primary | |
left_pad_source = self.args.left_pad_source | |
left_pad_target = self.args.left_pad_target | |
max_source_positions = self.args.max_source_positions | |
max_target_positions = self.args.max_target_positions | |
load_alignments = self.args.load_alignments | |
truncate_source = self.args.truncate_source | |
src_dataset_transform_func = self.src_dataset_tranform_func | |
tgt_dataset_transform_func = self.tgt_dataset_tranform_func | |
enable_lang_ids = self.args.enable_lang_ids | |
lang_dictionary = self.lang_dict | |
src_langtok_spec, tgt_langtok_spec = extra_kwargs["langtok_spec"] | |
src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec) | |
tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec) | |
logger.info( | |
f"{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}" | |
) | |
langpair_ds = self.load_langpair_dataset( | |
data_path, | |
split, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
dataset_impl, | |
upsample_primary, | |
left_pad_source, | |
left_pad_target, | |
max_source_positions, | |
max_target_positions, | |
prepend_bos, | |
load_alignments, | |
truncate_source, | |
src_dataset_transform_func=lambda dataset: src_dataset_transform_func( | |
src, tgt, dataset, src_langtok_spec | |
), | |
tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func( | |
src, tgt, dataset, tgt_langtok_spec | |
), | |
src_lang_id=_lang_id(lang_dictionary, src) | |
if enable_lang_ids and lang_dictionary is not None | |
else None, | |
tgt_lang_id=_lang_id(lang_dictionary, tgt) | |
if enable_lang_ids and lang_dictionary is not None | |
else None, | |
langpairs_sharing_datasets=langpairs_sharing_datasets, | |
) | |
# TODO: handle modified lang toks for mined data and dae data | |
if self.args.lang_tok_replacing_bos_eos: | |
ds = self.alter_dataset_langtok( | |
langpair_ds, | |
src_eos=self.get_source_dictionary(src).eos() | |
if src | |
else self.get_target_dictionary(tgt).eos(), | |
src_lang=src, | |
tgt_eos=self.get_target_dictionary(tgt).eos(), | |
tgt_lang=tgt, | |
src_langtok_spec=src_langtok_spec, | |
tgt_langtok_spec=tgt_langtok_spec, | |
) | |
else: | |
ds = langpair_ds | |
return ds | |
def load_split_langpair_datasets(self, split, data_param_list): | |
datasets = [] | |
langpairs_sharing_datasets = ( | |
{} if self.args.enable_reservsed_directions_shared_datasets else None | |
) | |
for param in data_param_list: | |
ds = self.load_a_dataset( | |
split=split, | |
langpairs_sharing_datasets=langpairs_sharing_datasets, | |
**param, | |
) | |
datasets.append(ds) | |
return datasets | |
def get_data_paths_and_lang_pairs(self, split): | |
datapaths = {"main": self.args.data} | |
lang_pairs = {"main": self.lang_pairs} | |
if split == getattr(self.args, "train_subset", None): | |
# only training data can have extra data and extra language pairs | |
if self.args.extra_data: | |
extra_datapaths = self.args.extra_data | |
datapaths.update(extra_datapaths) | |
if self.args.extra_lang_pairs: | |
extra_lang_pairs = { | |
k: v.split(",") for k, v in self.args.extra_lang_pairs.items() | |
} | |
lang_pairs.update(extra_lang_pairs) | |
return datapaths, lang_pairs | |
def get_dataset_key(cls, data_category, src, tgt): | |
return f"{data_category}:{src}-{tgt}" | |
def _get_shard_num_dict(cls, split, paths): | |
shards = defaultdict(int) | |
for path in paths: | |
files = PathManager.ls(path) | |
directions = set() | |
for f in files: | |
if f.startswith(split) and f.endswith(".idx"): | |
# idx files of the form "{split}.{src}-{tgt}.{lang}.idx" | |
direction = f.split(".")[-3] | |
directions.add(direction) | |
for direction in directions: | |
shards[direction] += 1 | |
return shards | |
def get_split_num_data_shards(self, split): | |
if split in self._num_shards_dict: | |
return self._num_shards_dict[split] | |
num_shards_dict = {} | |
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split) | |
for data_category, paths in data_paths.items(): | |
if data_category not in lang_pairs: | |
continue | |
paths = utils.split_paths(paths) | |
shards_dict = self._get_shard_num_dict(split, paths) | |
lang_dirs = [ | |
lang_pair.split("-") for lang_pair in lang_pairs[data_category] | |
] | |
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs] | |
for src, tgt in lang_dirs: | |
key = self.get_dataset_key(data_category, src, tgt) | |
if "mono_" in data_category: | |
# monolingual data requires tgt only | |
assert src is None or src == tgt, ( | |
f"error: src={src}, " | |
f"tgt={tgt} for data_category={data_category}" | |
) | |
num_shards_dict[key] = shards_dict[tgt] | |
else: | |
if f"{src}-{tgt}" in shards_dict: | |
num_shards_dict[key] = shards_dict[f"{src}-{tgt}"] | |
elif f"{tgt}-{src}" in shards_dict: | |
# follow the fairseq tradition to use reversed direction data if it is not available | |
num_shards_dict[key] = shards_dict[f"{tgt}-{src}"] | |
self._num_shards_dict[split] = num_shards_dict | |
logger.info(f"[{split}] num of shards: {num_shards_dict}") | |
return num_shards_dict | |
def get_shard_id(cls, num_shards, epoch, shard_epoch=None): | |
shard = epoch if shard_epoch is None else shard_epoch | |
shard = (shard - 1) % num_shards | |
return shard | |
def get_split_data_path(self, paths, epoch, shard_epoch, num_shards): | |
path = paths[self.get_shard_id(num_shards, epoch, shard_epoch)] | |
return path | |
def get_split_data_param_list(self, split, epoch, shard_epoch=None): | |
# TODO: to extend with extra datasets and keys and loop over different shard data paths | |
param_list = [] | |
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split) | |
logger.info(f"langtoks settings: {self.args.langtoks}") | |
split_num_shards_dict = self.get_split_num_data_shards(split) | |
for data_category, paths in data_paths.items(): | |
if data_category not in lang_pairs: | |
continue | |
paths = utils.split_paths(paths) | |
assert len(paths) > 0 | |
if len(paths) > 1: | |
self._has_sharded_data = True | |
if split != getattr(self.args, "train_subset", None): | |
# if not training data set, use the first shard for valid and test | |
paths = paths[:1] | |
if data_category in self.args.langtoks: | |
lang_tok_spec = self.args.langtoks[data_category] | |
else: | |
# default to None | |
lang_tok_spec = (None, None) | |
# infer langcode | |
lang_dirs = [ | |
lang_pair.split("-") for lang_pair in lang_pairs[data_category] | |
] | |
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs] | |
for src, tgt in lang_dirs: | |
assert src is not None or data_category == "mono_dae", ( | |
f"error: src={src}, " f"tgt={tgt} for data_category={data_category}" | |
) | |
# logger.info(f"preparing param for {data_category}: {src} - {tgt}") | |
key = self.get_dataset_key(data_category, src, tgt) | |
data_path = self.get_split_data_path( | |
paths, epoch, shard_epoch, split_num_shards_dict[key] | |
) | |
param_list.append( | |
{ | |
"key": key, | |
"data_path": data_path, | |
"split": split, | |
"src": src, | |
"src_dict": self.get_source_dictionary(src) | |
if src and data_category != "mono_dae" | |
else None, | |
"tgt": tgt, | |
"tgt_dict": self.get_target_dictionary(tgt), | |
"data_category": data_category, | |
"langtok_spec": lang_tok_spec, | |
} | |
) | |
return param_list | |
def get_train_dataset_sizes( | |
self, data_param_list, datasets, epoch, shard_epoch=None | |
): | |
num_shards = [ | |
self.get_split_num_data_shards(param["split"])[param["key"]] | |
for param in data_param_list | |
] | |
data_sizes = [] | |
for (key, d), num_shard in zip(datasets, num_shards): | |
my_data_sizes = self._training_data_sizes[key] | |
shard_ind = self.get_shard_id(num_shard, epoch, shard_epoch) | |
if shard_ind not in my_data_sizes: | |
my_data_sizes[shard_ind] = len(d) | |
known_size = max(my_data_sizes.values()) | |
data_sizes.append( | |
# If we don't know the data size of the shard yet, | |
# use the the max known data size to approximate. | |
# Note that we preprocess shards by a designated shard size | |
# and put any remaining data at the end into the last shard so | |
# the max shard size approximation is almost correct before loading | |
# the last shard; after loading the last shard, it will have the | |
# exact data sizes of the whole data size. | |
(key, sum(my_data_sizes.get(i, known_size) for i in range(num_shard))) | |
) | |
logger.info( | |
f"estimated total data sizes of all shards used in sampling ratios: {data_sizes}. " | |
"Note that if the data a shard has not been loaded yet, use the max known data size to approximate" | |
) | |
return [s for _, s in data_sizes] | |
def get_train_sampling_ratios( | |
self, data_param_list, datasets, epoch=1, shard_epoch=None | |
): | |
data_sizes = self.get_train_dataset_sizes( | |
data_param_list, datasets, epoch, shard_epoch | |
) | |
sampling_func = self.sampling_method.sampling_method_selector() | |
sample_ratios = sampling_func(data_sizes) if sampling_func is not None else None | |
return sample_ratios | |
def get_sampling_ratios(self, data_param_list, datasets, epoch, shard_epoch=None): | |
if self.args.sampling_weights_from_file: | |
weights = load_sampling_weights(self.args.sampling_weights_from_file) | |
sample_ratios = [weights[k] for k, _ in datasets] | |
logger.info( | |
"| ignoring --sampling-weights when loadding sampling weights " | |
f"from file {self.args.sampling_weights_from_file}" | |
) | |
elif self.args.sampling_weights: | |
sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets] | |
else: | |
sample_ratios = self.get_train_sampling_ratios( | |
data_param_list, datasets, epoch, shard_epoch | |
) | |
if sample_ratios is not None: | |
logger.info( | |
"| Upsample ratios: {}".format( | |
list(zip(map(lambda x: x["key"], data_param_list), sample_ratios)) | |
) | |
) | |
assert len(sample_ratios) == len(datasets) | |
return sample_ratios | |
def load_split_datasets( | |
self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs | |
): | |
data_param_list = self.get_split_data_param_list( | |
split, epoch, shard_epoch=shard_epoch | |
) | |
langpairs_sharing_datasets = ( | |
{} if self.args.enable_reservsed_directions_shared_datasets else None | |
) | |
datasets = [ | |
( | |
param["key"], | |
self.load_a_dataset( | |
combine=combine, | |
langpairs_sharing_datasets=langpairs_sharing_datasets, | |
**param, | |
), | |
) | |
for param in data_param_list | |
] | |
return datasets, data_param_list | |
def load_into_concat_dataset(self, split, datasets, data_param_list): | |
if self.args.lang_tok_replacing_bos_eos: | |
# TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset | |
return SampledMultiDataset( | |
OrderedDict(datasets), | |
sampling_ratios=None, | |
eval_key=None, | |
collate_format=CollateFormat.single, | |
virtual_size=None, | |
split=split, | |
) | |
return ConcatDataset([d for _, d in datasets]) | |
def load_sampled_multi_epoch_dataset( | |
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs | |
): | |
datasets, data_param_list = self.load_split_datasets( | |
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs | |
) | |
if training and split == getattr(self.args, "train_subset", None): | |
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch) | |
return SampledMultiEpochDataset( | |
OrderedDict(datasets), | |
epoch=epoch, | |
shard_epoch=shard_epoch, | |
# valid and test datasets will be degenerate to concating datasets: | |
sampling_ratios=sample_ratios, | |
eval_key=None, | |
collate_format=CollateFormat.single, | |
virtual_size=self.args.virtual_data_size, | |
split=split, | |
virtual_epoch_size=self.args.virtual_epoch_size, | |
# if not using lang_tok altering, simplified to use the same collater | |
shared_collater=self._shared_collater(), | |
) | |
else: | |
return self.load_into_concat_dataset(split, datasets, data_param_list) | |
def load_sampled_multi_dataset( | |
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs | |
): | |
datasets, data_param_list = self.load_split_datasets( | |
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs | |
) | |
if training and split == getattr(self.args, "train_subset", None): | |
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch) | |
return SampledMultiDataset( | |
OrderedDict(datasets), | |
epoch=epoch, | |
# valid and test datasets will be degerate to concating datasets: | |
sampling_ratios=sample_ratios, | |
eval_key=None, | |
collate_format=CollateFormat.single, | |
virtual_size=self.args.virtual_data_size, | |
split=split, | |
# if not using lang_tok altering, simplified to use the same collater | |
shared_collater=self._shared_collater(), | |
) | |
else: | |
return self.load_into_concat_dataset(split, datasets, data_param_list) | |
def load_dataset( | |
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs | |
): | |
if self.args.virtual_epoch_size is None: | |
return self.load_sampled_multi_dataset( | |
split, training, epoch, combine, shard_epoch, **kwargs | |
) | |
else: | |
return self.load_sampled_multi_epoch_dataset( | |
split, training, epoch, combine, shard_epoch, **kwargs | |
) | |