File size: 44,987 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import json
import logging
import math
import os
from collections import OrderedDict, defaultdict
from argparse import ArgumentError

from fairseq import utils
from fairseq.data import (
    AppendTokenDataset,
    ConcatDataset,
    Dictionary,
    LanguagePairDataset,
    PrependTokenDataset,
    SampledMultiDataset,
    SampledMultiEpochDataset,
    StripTokenDataset,
    TransformEosLangPairDataset,
    TruncateDataset,
    data_utils,
    indexed_dataset,
)
from fairseq.data.multilingual.multilingual_utils import (
    EncoderLangtok,
    LangTokSpec,
    LangTokStyle,
    augment_dictionary,
    get_lang_tok,
)
from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat
from fairseq.file_io import PathManager
from fairseq.utils import FileContentsAction, csv_str_list, eval_str_dict


logger = logging.getLogger(__name__)

SRC_DICT_NAME = "src"
TGT_DICT_NAME = "tgt"


def _lang_id(dic: Dictionary, lang: str):
    """Return language ID index."""
    idx = dic.index(lang)
    assert idx != dic.unk_index, "cannot find language ID for lang {}".format(lang)
    return idx


def load_sampling_weights(from_file):
    with open(from_file) as f:
        weights = json.load(f)
    return weights


class MultilingualDatasetManager(object):
    def __init__(self, args, lang_pairs, langs, dicts, sampling_method):
        super().__init__()
        self.args = args
        self.seed = args.seed
        self.lang_pairs = lang_pairs
        self.extra_lang_pairs = (
            list({p for _, v in args.extra_lang_pairs.items() for p in v.split(",")})
            if args.extra_lang_pairs
            else []
        )
        self.src_langs = {
            p.split("-")[0] for p in args.lang_pairs + self.extra_lang_pairs
        }
        self.tgt_langs = {
            p.split("-")[1] for p in args.lang_pairs + self.extra_lang_pairs
        }
        self.langs = langs
        self.dicts = dicts
        self.lang_dict = self.create_lang_dictionary(self.langs)
        self.sampling_method = sampling_method
        self.sampling_scheduler = None
        self._has_sharded_data = False
        self._num_shards_dict = {}
        self._training_data_sizes = defaultdict(lambda: {})

    @classmethod
    def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method):
        return MultilingualDatasetManager(
            args, lang_pairs, langs, dicts, sampling_method
        )

    @staticmethod
    def add_args(parser):
        parser.add_argument(
            "data",
            help="colon separated path to data directories list, \
                            will be iterated upon during epochs in round-robin manner",
            action=FileContentsAction,
        )
        parser.add_argument(
            "--langs",
            default=None,
            type=csv_str_list,
            help="a list of languages comma sperated languages which can appear in lang-pairs; "
            "note that the ordering determines language token IDs",
        )
        parser.add_argument(
            "--lang-dict",
            default=None,
            type=str,
            help="an external file which contains a list of "
            "languages which can appear in lang-pairs; "
            "note that the ordering determines language token IDs; "
            "--langs and --lang-dict are two exclusive options",
        )
        parser.add_argument(
            "--source-dict",
            default=None,
            type=str,
            help="path to source dictionary; if specified it will override per language dictionary loading",
        )
        parser.add_argument(
            "--target-dict",
            default=None,
            type=str,
            help="path to target dictionary; if specified it will override per language dictionary loading",
        )
        parser.add_argument(
            "--lang-tok-style",
            default=LangTokStyle.multilingual.value,
            type=str,
            choices=[LangTokStyle.multilingual.value, LangTokStyle.mbart.value],
            help="language token styles",
        )

        parser.add_argument(
            "--load-alignments",
            action="store_true",
            help="load the binarized alignments",
        )
        parser.add_argument(
            "--left-pad-source",
            default="True",
            type=str,
            metavar="BOOL",
            help="pad the source on the left",
        )
        parser.add_argument(
            "--left-pad-target",
            default="False",
            type=str,
            metavar="BOOL",
            help="pad the target on the left",
        )
        try:
            parser.add_argument(
                "--max-source-positions",
                default=1024,
                type=int,
                metavar="N",
                help="max number of tokens in the source sequence",
            )
            parser.add_argument(
                "--max-target-positions",
                default=1024,
                type=int,
                metavar="N",
                help="max number of tokens in the target sequence",
            )
        except ArgumentError:
            # this might have already been defined. Once we transition this to hydra it should be fine to add it here.
            pass
        parser.add_argument(
            "--upsample-primary",
            default=1,
            type=int,
            help="amount to upsample primary dataset",
        )
        parser.add_argument(
            "--truncate-source",
            action="store_true",
            default=False,
            help="truncate source to max-source-positions",
        )
        parser.add_argument(
            "--encoder-langtok",
            default=None,
            type=str,
            choices=[EncoderLangtok.src.value, EncoderLangtok.tgt.value],
            metavar="SRCTGT",
            help="prepend to the beginning of source sentence the source or target "
            "language token. (src/tgt)",
        )
        parser.add_argument(
            "--decoder-langtok",
            action="store_true",
            help="prepend to the beginning of target sentence the target language token",
        )
        parser.add_argument(
            "--lang-tok-replacing-bos-eos", action="store_true", default=False
        )
        parser.add_argument(
            "--enable-lang-ids",
            default=False,
            action="store_true",
            help="whether to include language IDs in samples",
        )
        parser.add_argument(
            "--enable-reservsed-directions-shared-datasets",
            default=False,
            action="store_true",
            help="whether to allow datasets be used in reversed directions",
        )

        parser.add_argument(
            "--extra-data",
            help='a dictionary of data name to this path, \
                            e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}',
            type=lambda uf: eval_str_dict(uf, type=str),
            default=None,
        )
        parser.add_argument(
            "--extra-lang-pairs",
            help='a dictionary of data name to the language pairs they serve, \
                            e.g. {"mined": comma-separated-lang-pairs, "denoised":  comma-separated-lang-pairs}',
            type=lambda uf: eval_str_dict(uf, type=str),
            default=None,
        )
        parser.add_argument(
            "--fixed-dictionary",
            help="Fixed dictionary to use with model path",
            default=None,
            type=str,
        )
        parser.add_argument(
            "--langtoks-specs",
            help='a list of comma separated data types that a set of language tokens to be specialized for, \
                            e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \
                            distinguish languages in different training data types. If not specified, default language \
                            tokens per languages will be added',
            default=LangTokSpec.main.value,
            type=csv_str_list,
        )
        parser.add_argument(
            "--langtoks",
            help='a dictionary of how to add language tokens, \
                            e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \
                            ("src", "tgt")}, or {"mined": ("src.mined", "tgt")}',
            default=None,
            type=lambda uf: eval_str_dict(uf, type=str),
        )
        parser.add_argument(
            "--sampling-weights-from-file",
            help='a file contain a python dictionary of how to sample data sets, \
                                e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
                                    "mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
            default=None,
            type=str,
        )
        parser.add_argument(
            "--sampling-weights",
            help='a dictionary of how to sample data sets, \
                            e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
                                   "mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
            default=None,
            type=lambda uf: eval_str_dict(uf, type=str),
        )
        parser.add_argument(
            "--virtual-epoch-size",
            default=None,
            type=int,
            help="virtual epoch size to speed up data loading",
        )
        parser.add_argument(
            "--virtual-data-size",
            default=None,
            type=int,
            help="virtual data size of the whole joint dataset to speed"
            "up data loading and have specific dynamic sampling strategy interval",
        )

    @classmethod
    def load_langs(cls, args, **kwargs):
        if args.lang_dict and args.langs:
            raise ValueError("--langs and --lang-dict can not both be specified")
        if args.lang_dict is None and args.langs is None:
            logger.warning(
                "External language dictionary is not provided; "
                "use lang-pairs to infer the set of supported languages. "
                "The language ordering is not stable which might cause "
                "misalignment in pretraining and finetuning."
            )
            # infer from lang_pairs as it is
            langs = list(
                {x for lang_pair in args.lang_pairs for x in lang_pair.split("-")}
            )
            langs = sorted(langs)
            logger.info(f"inferred language list: {langs}")
        elif args.lang_dict:
            with open(
                PathManager.get_local_path(args.lang_dict), "r", encoding="utf-8"
            ) as f:
                langs = [lang.strip() for lang in f.readlines() if lang.strip()]
                logger.info(
                    f"loaded language list from {args.lang_dict} as they are ordered in file"
                )
        elif args.langs:
            langs = args.langs
            logger.info(
                f"parsed the language list as they are ordered in the option: {langs}"
            )
        return langs

    def has_sharded_data(self, split):
        return self._has_sharded_data and split == getattr(
            self.args, "train_subset", None
        )

    def _shared_collater(self):
        return not (self.args.extra_data and "mono_dae" in self.args.extra_data) and (
            not self.args.lang_tok_replacing_bos_eos
        )

    def estimate_global_pass_epoch(self, epoch):
        if self.args.virtual_epoch_size is None or self.args.virtual_data_size is None:
            return None
        # one epoch more for remaining data in each shard
        virtual_epochs_per_shard = math.ceil(
            self.args.virtual_data_size / self.args.virtual_epoch_size
        )
        # note that fairseq epoch / shard_epoch starts from 1
        shard_epoch = (epoch - 1) // virtual_epochs_per_shard + 1
        return shard_epoch

    @classmethod
    def prepare(cls, load_dictionary, args, **kargs):
        args.left_pad_source = utils.eval_bool(args.left_pad_source)
        args.left_pad_target = utils.eval_bool(args.left_pad_target)

        if not hasattr(args, "shuffle_instance"):
            args.shuffle_instance = False
        if args.langtoks is None:
            args.langtoks = {}
        if "main" not in args.langtoks:
            src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None
            tgt_langtok_spec = "tgt" if args.decoder_langtok else None
            args.langtoks["main"] = (src_langtok_spec, tgt_langtok_spec)

        def check_langs(langs, pairs):
            messages = []
            for src, tgt in pairs:
                if src not in langs or tgt not in langs:
                    messages.append(
                        f"language pair {src}-{tgt} contains languages "
                        "that are not in the language dictionary"
                    )
            if len(messages) > 0:
                raise ValueError(" ".join(messages) + f"; langs: {langs}")

        if args.lang_pairs is None:
            raise ValueError(
                "--lang-pairs is required. List all the language pairs in the training objective."
            )
        if isinstance(args.lang_pairs, str):
            args.lang_pairs = args.lang_pairs.split(",")
        if args.source_lang is not None or args.target_lang is not None:
            training = False
        else:
            training = True
        language_list = cls.load_langs(args, **kargs)
        check_langs(
            language_list,
            (
                [p.split("-") for p in args.lang_pairs]
                if training
                else [(args.source_lang, args.target_lang)]
            ),
        )

        def load_dictionary_and_postproc(path):
            d = load_dictionary(path)
            augment_dictionary(
                dictionary=d,
                language_list=language_list,
                lang_tok_style=args.lang_tok_style,
                langtoks_specs=args.langtoks_specs,
                extra_data=args.extra_data,
            )
            return d

        dicts = cls.load_all_dictionaries(
            args, language_list, load_dictionary_and_postproc, training
        )
        return language_list, dicts, training

    @classmethod
    def load_all_dictionaries(cls, args, language_list, load_dictionary, training):
        dicts = OrderedDict()
        if args.source_dict is not None:
            dicts[SRC_DICT_NAME] = load_dictionary(args.source_dict)
        if args.target_dict is not None:
            dicts[TGT_DICT_NAME] = load_dictionary(args.target_dict)

        if training:
            extra_lang_pairs = (
                list(
                    {p for _, v in args.extra_lang_pairs.items() for p in v.split(",")}
                )
                if args.extra_lang_pairs
                else []
            )
            src_langs_to_load_dicts = sorted(
                {p.split("-")[0] for p in (args.lang_pairs + extra_lang_pairs)}
            )
            tgt_langs_to_load_dicts = sorted(
                {p.split("-")[1] for p in (args.lang_pairs + extra_lang_pairs)}
            )
        else:
            src_langs_to_load_dicts = [args.source_lang]
            tgt_langs_to_load_dicts = [args.target_lang]

        paths = utils.split_paths(args.data)
        assert len(paths) > 0

        def load_dicts(langs_to_load_dicts):
            for lang in langs_to_load_dicts:
                dicts[lang] = load_dictionary(
                    os.path.join(paths[0], "dict.{}.txt".format(lang))
                )
            if len(dicts) > 0:
                dict0 = next(iter(dicts.values()))
                assert dicts[lang].pad() == dict0.pad()
                assert dicts[lang].eos() == dict0.eos()
                assert dicts[lang].unk() == dict0.unk()
            logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))

        if args.fixed_dictionary is not None:
            fixed_dict = load_dictionary(args.fixed_dictionary)
            dicts = {
                lang: fixed_dict
                for lang in src_langs_to_load_dicts + tgt_langs_to_load_dicts
            }
        else:
            if args.source_dict is None:
                load_dicts(src_langs_to_load_dicts)
            if args.target_dict is None:
                load_dicts(tgt_langs_to_load_dicts)
        return dicts

    def get_source_dictionary(self, lang):
        if self.args.source_dict is not None:
            return self.dicts[SRC_DICT_NAME]
        else:
            return self.dicts[lang]

    def get_target_dictionary(self, lang):
        if self.args.target_dict is not None:
            return self.dicts[TGT_DICT_NAME]
        else:
            return self.dicts[lang]

    @classmethod
    def create_lang_dictionary(cls, langs):
        unk = "<unk>"
        # hack to remove symbols other than unk as they are not needed by lang dict
        lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk)
        for lang in langs:
            lang_dict.add_symbol(lang)
        return lang_dict

    @classmethod
    def get_langtok_index(cls, lang_tok, dic):
        idx = dic.index(lang_tok)
        assert (
            idx != dic.unk_index
        ), "cannot find language token {} in the dictionary".format(lang_tok)
        return idx

    def get_encoder_langtok(self, src_lang, tgt_lang, spec=None):
        if spec is None:
            return None
        if spec and spec.startswith("src"):
            if src_lang is None:
                return None
            langtok = get_lang_tok(
                lang=src_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
            )
        else:
            if tgt_lang is None:
                return None
            langtok = get_lang_tok(
                lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
            )
        return self.get_langtok_index(
            langtok,
            self.get_source_dictionary(src_lang)
            if src_lang
            else self.get_target_dictionary(tgt_lang),
        )

    def get_decoder_langtok(self, tgt_lang, spec=None):
        if spec is None:
            return None
        langtok = get_lang_tok(
            lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
        )
        return self.get_langtok_index(langtok, self.get_target_dictionary(tgt_lang))

    @classmethod
    def load_data(cls, path, vdict, impl):
        dataset = data_utils.load_indexed_dataset(path, vdict, impl)
        return dataset

    @classmethod
    def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl):
        filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
        return indexed_dataset.dataset_exists(filename, impl=dataset_impl)

    def load_lang_dataset(
        self,
        data_path,
        split,
        src,
        src_dict,
        tgt,
        tgt_dict,
        combine,
        dataset_impl,
        upsample_primary,
        max_source_positions,
        prepend_bos=False,
        load_alignments=False,
        truncate_source=False,
    ):

        src_datasets = []
        tgt_datasets = []

        for k in itertools.count():
            split_k = split + (str(k) if k > 0 else "")

            # infer langcode
            if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl):
                prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
            elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl):
                prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
            else:
                if k > 0:
                    break
                else:
                    logger.error(
                        f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}"
                    )
                    raise FileNotFoundError(
                        "Dataset not found: {} ({})".format(split, data_path)
                    )

            src_dataset = self.load_data(prefix + src, src_dict, dataset_impl)
            if truncate_source:
                src_dataset = AppendTokenDataset(
                    TruncateDataset(
                        StripTokenDataset(src_dataset, src_dict.eos()),
                        max_source_positions - 1,
                    ),
                    src_dict.eos(),
                )
            src_datasets.append(src_dataset)
            tgt_datasets.append(self.load_data(prefix + tgt, tgt_dict, dataset_impl))

            logger.info(
                "{} {} {}-{} {} examples".format(
                    data_path, split_k, src, tgt, len(src_datasets[-1])
                )
            )

            if not combine:
                break

        assert len(src_datasets) == len(tgt_datasets)

        if len(src_datasets) == 1:
            src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0]
        else:
            sample_ratios = [1] * len(src_datasets)
            sample_ratios[0] = upsample_primary
            src_dataset = ConcatDataset(src_datasets, sample_ratios)
            tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)

        if prepend_bos:
            assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
            src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
            tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())

        align_dataset = None
        if load_alignments:
            align_path = os.path.join(
                data_path, "{}.align.{}-{}".format(split, src, tgt)
            )
            if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
                align_dataset = data_utils.load_indexed_dataset(
                    align_path, None, dataset_impl
                )

        return src_dataset, tgt_dataset, align_dataset

    def load_langpair_dataset(
        self,
        data_path,
        split,
        src,
        src_dict,
        tgt,
        tgt_dict,
        combine,
        dataset_impl,
        upsample_primary,
        left_pad_source,
        left_pad_target,
        max_source_positions,
        max_target_positions,
        prepend_bos=False,
        load_alignments=False,
        truncate_source=False,
        src_dataset_transform_func=lambda dataset: dataset,
        tgt_dataset_transform_func=lambda dataset: dataset,
        src_lang_id=None,
        tgt_lang_id=None,
        langpairs_sharing_datasets=None,
    ):
        norm_direction = "-".join(sorted([src, tgt]))
        if langpairs_sharing_datasets is not None:
            src_dataset = langpairs_sharing_datasets.get(
                (data_path, split, norm_direction, src), "NotInCache"
            )
            tgt_dataset = langpairs_sharing_datasets.get(
                (data_path, split, norm_direction, tgt), "NotInCache"
            )
            align_dataset = langpairs_sharing_datasets.get(
                (data_path, split, norm_direction, src, tgt), "NotInCache"
            )

        # a hack: any one is not in cache, we need to reload them
        if (
            langpairs_sharing_datasets is None
            or src_dataset == "NotInCache"
            or tgt_dataset == "NotInCache"
            or align_dataset == "NotInCache"
            or split != getattr(self.args, "train_subset", None)
        ):
            # source and target datasets can be reused in reversed directions to save memory
            # reversed directions of valid and test data will not share source and target datasets
            src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset(
                data_path,
                split,
                src,
                src_dict,
                tgt,
                tgt_dict,
                combine,
                dataset_impl,
                upsample_primary,
                max_source_positions=max_source_positions,
                prepend_bos=prepend_bos,
                load_alignments=load_alignments,
                truncate_source=truncate_source,
            )
            src_dataset = src_dataset_transform_func(src_dataset)
            tgt_dataset = tgt_dataset_transform_func(tgt_dataset)
            if langpairs_sharing_datasets is not None:
                langpairs_sharing_datasets[
                    (data_path, split, norm_direction, src)
                ] = src_dataset
                langpairs_sharing_datasets[
                    (data_path, split, norm_direction, tgt)
                ] = tgt_dataset
                langpairs_sharing_datasets[
                    (data_path, split, norm_direction, src, tgt)
                ] = align_dataset
                if align_dataset is None:
                    # no align data so flag the reverse direction as well in sharing
                    langpairs_sharing_datasets[
                        (data_path, split, norm_direction, tgt, src)
                    ] = align_dataset
        else:
            logger.info(
                f"Reusing source and target datasets of [{split}] {tgt}-{src} for reversed direction: "
                f"[{split}] {src}-{tgt}: src length={len(src_dataset)}; tgt length={len(tgt_dataset)}"
            )

        return LanguagePairDataset(
            src_dataset,
            src_dataset.sizes,
            src_dict,
            tgt_dataset,
            tgt_dataset.sizes if tgt_dataset is not None else None,
            tgt_dict,
            left_pad_source=left_pad_source,
            left_pad_target=left_pad_target,
            align_dataset=align_dataset,
            src_lang_id=src_lang_id,
            tgt_lang_id=tgt_lang_id,
        )

    def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None):
        if self.args.lang_tok_replacing_bos_eos:
            # it is handled by self.alter_dataset_langtok
            # TODO: Unifiy with alter_dataset_langtok
            return dataset
        if spec is None:
            return dataset
        tok = self.get_encoder_langtok(src_lang, tgt_lang, spec)
        if tok:
            return PrependTokenDataset(dataset, tok)
        return dataset

    def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None):
        if dataset is None:
            # note that target dataset can be None during inference time
            return None
        if self.args.lang_tok_replacing_bos_eos:
            # TODO: Unifiy with alter_dataset_langtok
            # It is handled by self.alter_dataset_langtok.
            # The complication in self.alter_dataset_langtok
            # makes a unified framework difficult.
            return dataset
        # if not self.args.decoder_langtok:
        if not spec:
            return dataset
        tok = self.get_decoder_langtok(target_lang, spec)
        if tok:
            return PrependTokenDataset(dataset, tok)
        return dataset

    def alter_dataset_langtok(
        self,
        lang_pair_dataset,
        src_eos=None,
        src_lang=None,
        tgt_eos=None,
        tgt_lang=None,
        src_langtok_spec=None,
        tgt_langtok_spec=None,
    ):
        if src_langtok_spec is None and tgt_langtok_spec is None:
            return lang_pair_dataset

        new_src_eos = None
        if (
            src_langtok_spec is not None
            and src_eos is not None
            and (src_lang is not None or tgt_lang is not None)
        ):
            new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec)
        else:
            src_eos = None

        new_tgt_bos = None
        if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None:
            new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec)
        else:
            tgt_eos = None

        return TransformEosLangPairDataset(
            lang_pair_dataset,
            src_eos=src_eos,
            new_src_eos=new_src_eos,
            tgt_bos=tgt_eos,
            new_tgt_bos=new_tgt_bos,
        )

    def load_a_dataset(
        self,
        split,
        data_path,
        src,
        src_dict,
        tgt,
        tgt_dict,
        combine,
        prepend_bos=False,
        langpairs_sharing_datasets=None,
        data_category=None,
        **extra_kwargs,
    ):
        dataset_impl = self.args.dataset_impl
        upsample_primary = self.args.upsample_primary
        left_pad_source = self.args.left_pad_source
        left_pad_target = self.args.left_pad_target
        max_source_positions = self.args.max_source_positions
        max_target_positions = self.args.max_target_positions
        load_alignments = self.args.load_alignments
        truncate_source = self.args.truncate_source
        src_dataset_transform_func = self.src_dataset_tranform_func
        tgt_dataset_transform_func = self.tgt_dataset_tranform_func
        enable_lang_ids = self.args.enable_lang_ids
        lang_dictionary = self.lang_dict
        src_langtok_spec, tgt_langtok_spec = extra_kwargs["langtok_spec"]

        src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec)
        tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec)
        logger.info(
            f"{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}"
        )

        langpair_ds = self.load_langpair_dataset(
            data_path,
            split,
            src,
            src_dict,
            tgt,
            tgt_dict,
            combine,
            dataset_impl,
            upsample_primary,
            left_pad_source,
            left_pad_target,
            max_source_positions,
            max_target_positions,
            prepend_bos,
            load_alignments,
            truncate_source,
            src_dataset_transform_func=lambda dataset: src_dataset_transform_func(
                src, tgt, dataset, src_langtok_spec
            ),
            tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func(
                src, tgt, dataset, tgt_langtok_spec
            ),
            src_lang_id=_lang_id(lang_dictionary, src)
            if enable_lang_ids and lang_dictionary is not None
            else None,
            tgt_lang_id=_lang_id(lang_dictionary, tgt)
            if enable_lang_ids and lang_dictionary is not None
            else None,
            langpairs_sharing_datasets=langpairs_sharing_datasets,
        )
        # TODO: handle modified lang toks for mined data and dae data
        if self.args.lang_tok_replacing_bos_eos:
            ds = self.alter_dataset_langtok(
                langpair_ds,
                src_eos=self.get_source_dictionary(src).eos()
                if src
                else self.get_target_dictionary(tgt).eos(),
                src_lang=src,
                tgt_eos=self.get_target_dictionary(tgt).eos(),
                tgt_lang=tgt,
                src_langtok_spec=src_langtok_spec,
                tgt_langtok_spec=tgt_langtok_spec,
            )
        else:
            ds = langpair_ds
        return ds

    def load_split_langpair_datasets(self, split, data_param_list):
        datasets = []
        langpairs_sharing_datasets = (
            {} if self.args.enable_reservsed_directions_shared_datasets else None
        )
        for param in data_param_list:
            ds = self.load_a_dataset(
                split=split,
                langpairs_sharing_datasets=langpairs_sharing_datasets,
                **param,
            )
            datasets.append(ds)
        return datasets

    def get_data_paths_and_lang_pairs(self, split):
        datapaths = {"main": self.args.data}
        lang_pairs = {"main": self.lang_pairs}
        if split == getattr(self.args, "train_subset", None):
            # only training data can have extra data and extra language pairs
            if self.args.extra_data:
                extra_datapaths = self.args.extra_data
                datapaths.update(extra_datapaths)
            if self.args.extra_lang_pairs:
                extra_lang_pairs = {
                    k: v.split(",") for k, v in self.args.extra_lang_pairs.items()
                }
                lang_pairs.update(extra_lang_pairs)
        return datapaths, lang_pairs

    @classmethod
    def get_dataset_key(cls, data_category, src, tgt):
        return f"{data_category}:{src}-{tgt}"

    @classmethod
    def _get_shard_num_dict(cls, split, paths):
        shards = defaultdict(int)
        for path in paths:
            files = PathManager.ls(path)
            directions = set()
            for f in files:
                if f.startswith(split) and f.endswith(".idx"):
                    # idx files of the form "{split}.{src}-{tgt}.{lang}.idx"
                    direction = f.split(".")[-3]
                    directions.add(direction)
            for direction in directions:
                shards[direction] += 1
        return shards

    def get_split_num_data_shards(self, split):
        if split in self._num_shards_dict:
            return self._num_shards_dict[split]
        num_shards_dict = {}
        data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)

        for data_category, paths in data_paths.items():
            if data_category not in lang_pairs:
                continue
            paths = utils.split_paths(paths)
            shards_dict = self._get_shard_num_dict(split, paths)
            lang_dirs = [
                lang_pair.split("-") for lang_pair in lang_pairs[data_category]
            ]
            lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
            for src, tgt in lang_dirs:
                key = self.get_dataset_key(data_category, src, tgt)
                if "mono_" in data_category:
                    # monolingual data requires tgt only
                    assert src is None or src == tgt, (
                        f"error: src={src}, "
                        f"tgt={tgt} for data_category={data_category}"
                    )
                    num_shards_dict[key] = shards_dict[tgt]
                else:
                    if f"{src}-{tgt}" in shards_dict:
                        num_shards_dict[key] = shards_dict[f"{src}-{tgt}"]
                    elif f"{tgt}-{src}" in shards_dict:
                        # follow the fairseq tradition to use reversed direction data if it is not available
                        num_shards_dict[key] = shards_dict[f"{tgt}-{src}"]
        self._num_shards_dict[split] = num_shards_dict
        logger.info(f"[{split}] num of shards: {num_shards_dict}")
        return num_shards_dict

    @classmethod
    def get_shard_id(cls, num_shards, epoch, shard_epoch=None):
        shard = epoch if shard_epoch is None else shard_epoch
        shard = (shard - 1) % num_shards
        return shard

    def get_split_data_path(self, paths, epoch, shard_epoch, num_shards):
        path = paths[self.get_shard_id(num_shards, epoch, shard_epoch)]
        return path

    def get_split_data_param_list(self, split, epoch, shard_epoch=None):
        # TODO: to extend with extra datasets and keys and loop over different shard data paths
        param_list = []
        data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)
        logger.info(f"langtoks settings: {self.args.langtoks}")
        split_num_shards_dict = self.get_split_num_data_shards(split)
        for data_category, paths in data_paths.items():
            if data_category not in lang_pairs:
                continue
            paths = utils.split_paths(paths)
            assert len(paths) > 0
            if len(paths) > 1:
                self._has_sharded_data = True
            if split != getattr(self.args, "train_subset", None):
                # if not training data set, use the first shard for valid and test
                paths = paths[:1]

            if data_category in self.args.langtoks:
                lang_tok_spec = self.args.langtoks[data_category]
            else:
                # default to None
                lang_tok_spec = (None, None)

            # infer langcode
            lang_dirs = [
                lang_pair.split("-") for lang_pair in lang_pairs[data_category]
            ]
            lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
            for src, tgt in lang_dirs:
                assert src is not None or data_category == "mono_dae", (
                    f"error: src={src}, " f"tgt={tgt} for data_category={data_category}"
                )
                # logger.info(f"preparing param for {data_category}: {src} - {tgt}")
                key = self.get_dataset_key(data_category, src, tgt)
                data_path = self.get_split_data_path(
                    paths, epoch, shard_epoch, split_num_shards_dict[key]
                )
                param_list.append(
                    {
                        "key": key,
                        "data_path": data_path,
                        "split": split,
                        "src": src,
                        "src_dict": self.get_source_dictionary(src)
                        if src and data_category != "mono_dae"
                        else None,
                        "tgt": tgt,
                        "tgt_dict": self.get_target_dictionary(tgt),
                        "data_category": data_category,
                        "langtok_spec": lang_tok_spec,
                    }
                )
        return param_list

    def get_train_dataset_sizes(
        self, data_param_list, datasets, epoch, shard_epoch=None
    ):
        num_shards = [
            self.get_split_num_data_shards(param["split"])[param["key"]]
            for param in data_param_list
        ]
        data_sizes = []
        for (key, d), num_shard in zip(datasets, num_shards):
            my_data_sizes = self._training_data_sizes[key]
            shard_ind = self.get_shard_id(num_shard, epoch, shard_epoch)
            if shard_ind not in my_data_sizes:
                my_data_sizes[shard_ind] = len(d)
            known_size = max(my_data_sizes.values())
            data_sizes.append(
                # If we don't know the data size of the shard yet,
                # use the the max known data size to approximate.
                # Note that we preprocess shards by a designated shard size
                # and put any remaining data at the end into the last shard so
                # the max shard size approximation is almost correct before loading
                # the last shard; after loading the last shard, it will have the
                # exact data sizes of the whole data size.
                (key, sum(my_data_sizes.get(i, known_size) for i in range(num_shard)))
            )
        logger.info(
            f"estimated total data sizes of all shards used in sampling ratios: {data_sizes}. "
            "Note that if the data a shard has not been loaded yet, use the max known data size to approximate"
        )
        return [s for _, s in data_sizes]

    def get_train_sampling_ratios(
        self, data_param_list, datasets, epoch=1, shard_epoch=None
    ):
        data_sizes = self.get_train_dataset_sizes(
            data_param_list, datasets, epoch, shard_epoch
        )
        sampling_func = self.sampling_method.sampling_method_selector()
        sample_ratios = sampling_func(data_sizes) if sampling_func is not None else None
        return sample_ratios

    def get_sampling_ratios(self, data_param_list, datasets, epoch, shard_epoch=None):
        if self.args.sampling_weights_from_file:
            weights = load_sampling_weights(self.args.sampling_weights_from_file)
            sample_ratios = [weights[k] for k, _ in datasets]
            logger.info(
                "| ignoring --sampling-weights when loadding sampling weights "
                f"from file {self.args.sampling_weights_from_file}"
            )
        elif self.args.sampling_weights:
            sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets]
        else:
            sample_ratios = self.get_train_sampling_ratios(
                data_param_list, datasets, epoch, shard_epoch
            )

        if sample_ratios is not None:
            logger.info(
                "| Upsample ratios: {}".format(
                    list(zip(map(lambda x: x["key"], data_param_list), sample_ratios))
                )
            )
            assert len(sample_ratios) == len(datasets)
        return sample_ratios

    def load_split_datasets(
        self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs
    ):
        data_param_list = self.get_split_data_param_list(
            split, epoch, shard_epoch=shard_epoch
        )
        langpairs_sharing_datasets = (
            {} if self.args.enable_reservsed_directions_shared_datasets else None
        )
        datasets = [
            (
                param["key"],
                self.load_a_dataset(
                    combine=combine,
                    langpairs_sharing_datasets=langpairs_sharing_datasets,
                    **param,
                ),
            )
            for param in data_param_list
        ]
        return datasets, data_param_list

    def load_into_concat_dataset(self, split, datasets, data_param_list):
        if self.args.lang_tok_replacing_bos_eos:
            # TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset
            return SampledMultiDataset(
                OrderedDict(datasets),
                sampling_ratios=None,
                eval_key=None,
                collate_format=CollateFormat.single,
                virtual_size=None,
                split=split,
            )
        return ConcatDataset([d for _, d in datasets])

    def load_sampled_multi_epoch_dataset(
        self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
    ):
        datasets, data_param_list = self.load_split_datasets(
            split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
        )
        if training and split == getattr(self.args, "train_subset", None):
            sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
            return SampledMultiEpochDataset(
                OrderedDict(datasets),
                epoch=epoch,
                shard_epoch=shard_epoch,
                # valid and test datasets will be degenerate to concating datasets:
                sampling_ratios=sample_ratios,
                eval_key=None,
                collate_format=CollateFormat.single,
                virtual_size=self.args.virtual_data_size,
                split=split,
                virtual_epoch_size=self.args.virtual_epoch_size,
                # if not using lang_tok altering, simplified to use the same collater
                shared_collater=self._shared_collater(),
            )
        else:
            return self.load_into_concat_dataset(split, datasets, data_param_list)

    def load_sampled_multi_dataset(
        self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
    ):
        datasets, data_param_list = self.load_split_datasets(
            split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
        )
        if training and split == getattr(self.args, "train_subset", None):
            sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
            return SampledMultiDataset(
                OrderedDict(datasets),
                epoch=epoch,
                # valid and test datasets will be degerate to concating datasets:
                sampling_ratios=sample_ratios,
                eval_key=None,
                collate_format=CollateFormat.single,
                virtual_size=self.args.virtual_data_size,
                split=split,
                # if not using lang_tok altering, simplified to use the same collater
                shared_collater=self._shared_collater(),
            )
        else:
            return self.load_into_concat_dataset(split, datasets, data_param_list)

    def load_dataset(
        self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
    ):
        if self.args.virtual_epoch_size is None:
            return self.load_sampled_multi_dataset(
                split, training, epoch, combine, shard_epoch, **kwargs
            )
        else:
            return self.load_sampled_multi_epoch_dataset(
                split, training, epoch, combine, shard_epoch, **kwargs
            )