Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load model and tokenizer | |
def load_model(): | |
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
return model, tokenizer | |
model, tokenizer = load_model() | |
# Streamlit UI | |
st.title("CodeCorrect AI") | |
st.subheader("AI-powered Code Autocorrect Tool") | |
code_input = st.text_area("Enter your buggy code here:", height=200) | |
if st.button("Correct Code"): | |
if code_input.strip(): | |
prompt = f"### Fix the following code:\n{code_input}\n### Corrected version:\n" | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to("cuda" if torch.cuda.is_available() else "cpu") | |
outputs = model.generate(**inputs, max_length=512) | |
corrected_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.text_area("Corrected Code:", corrected_code, height=200) | |
else: | |
st.warning("Please enter some code.") | |
st.markdown("Powered by Hugging Face π€") | |