Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
|
|
4 |
@st.cache_resource()
|
5 |
def load_model():
|
6 |
-
model_name = "
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
return model, tokenizer
|
10 |
|
11 |
model, tokenizer = load_model()
|
12 |
|
|
|
13 |
st.title("CodeCorrect AI")
|
14 |
st.subheader("AI-powered Code Autocorrect Tool")
|
15 |
|
16 |
-
code_input = st.text_area("Enter your code here:", height=200)
|
17 |
|
18 |
if st.button("Correct Code"):
|
19 |
if code_input.strip():
|
20 |
prompt = f"### Fix the following code:\n{code_input}\n### Corrected version:\n"
|
21 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
22 |
outputs = model.generate(**inputs, max_length=512)
|
23 |
corrected_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
24 |
st.text_area("Corrected Code:", corrected_code, height=200)
|
25 |
else:
|
26 |
st.warning("Please enter some code.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load model and tokenizer
|
6 |
@st.cache_resource()
|
7 |
def load_model():
|
8 |
+
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
11 |
return model, tokenizer
|
12 |
|
13 |
model, tokenizer = load_model()
|
14 |
|
15 |
+
# Streamlit UI
|
16 |
st.title("CodeCorrect AI")
|
17 |
st.subheader("AI-powered Code Autocorrect Tool")
|
18 |
|
19 |
+
code_input = st.text_area("Enter your buggy code here:", height=200)
|
20 |
|
21 |
if st.button("Correct Code"):
|
22 |
if code_input.strip():
|
23 |
prompt = f"### Fix the following code:\n{code_input}\n### Corrected version:\n"
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
outputs = model.generate(**inputs, max_length=512)
|
26 |
corrected_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
|
28 |
st.text_area("Corrected Code:", corrected_code, height=200)
|
29 |
else:
|
30 |
st.warning("Please enter some code.")
|