Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,15 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
# Load the base model
|
15 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
16 |
-
base_model_name,
|
17 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
18 |
-
)
|
19 |
|
20 |
-
print("🔧 Loading LoRA adapter...")
|
21 |
-
# Load the LoRA adapter
|
22 |
-
adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
|
23 |
-
|
24 |
-
print("🔗 Merging adapter into base model...")
|
25 |
-
# Merge adapter into the base model
|
26 |
-
merged_model = adapter_model.merge_and_unload()
|
27 |
-
merged_model.eval()
|
28 |
-
|
29 |
-
# Load tokenizer
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
31 |
-
print("✅ Model ready for inference!")
|
32 |
-
|
33 |
-
# Text generation function
|
34 |
-
def generate_text(prompt):
|
35 |
-
# Tokenize the input
|
36 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
37 |
-
|
38 |
-
with torch.no_grad():
|
39 |
-
outputs = merged_model.generate(
|
40 |
-
**inputs,
|
41 |
-
max_new_tokens=150,
|
42 |
-
do_sample=True,
|
43 |
-
temperature=0.7,
|
44 |
-
top_p=0.9,
|
45 |
-
pad_token_id=tokenizer.eos_token_id
|
46 |
-
)
|
47 |
-
|
48 |
-
# Decode and return the generated response
|
49 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
-
return response
|
51 |
-
|
52 |
-
# Gradio UI
|
53 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
54 |
-
gr.Markdown("<h1>🧠 Phi-2 QLoRA Text Generator</h1>")
|
55 |
-
|
56 |
-
# Textbox for user input
|
57 |
-
prompt = gr.Textbox(label="Enter your prompt:", lines=2)
|
58 |
-
|
59 |
-
# Output textbox for generated text
|
60 |
-
output = gr.Textbox(label="Generated text:", lines=5)
|
61 |
-
|
62 |
-
# Button to trigger text generation
|
63 |
-
generate_button = gr.Button("Generate Text")
|
64 |
-
|
65 |
-
# Set the button action to generate text
|
66 |
-
generate_button.click(generate_text, inputs=prompt, outputs=output)
|
67 |
-
|
68 |
-
# Launch the app
|
69 |
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
3 |
|
4 |
+
def merge_model():
|
5 |
+
subprocess.run(["python", "merge_and_save_model.py"], check=True)
|
6 |
+
return "Model merged and saved successfully!"
|
7 |
|
8 |
+
with gr.Blocks() as demo:
|
9 |
+
gr.Markdown("<h1>🧠 Phi-2 QLoRA Model Merger</h1>")
|
10 |
+
merge_button = gr.Button("Merge Model")
|
11 |
+
output = gr.Textbox(label="Merge Status")
|
12 |
|
13 |
+
merge_button.click(merge_model, [], output)
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
demo.launch(share=True)
|