Spaces:
Sleeping
Sleeping
Create merge_and_save_model.py
Browse files- merge_and_save_model.py +25 -0
merge_and_save_model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
|
5 |
+
# Use GPU if available
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
# Base model and adapter paths
|
9 |
+
base_model_name = "microsoft/phi-2" # Pull from HF Hub directly
|
10 |
+
adapter_path = "Shriti09/Microsoft-Phi-QLora" # Update with your Hugging Face repo path
|
11 |
+
|
12 |
+
# Load the base model
|
13 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
base_model_name,
|
15 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the LoRA adapter
|
19 |
+
adapter_model = PeftModel.from_pretrained(base_model, adapter_path)
|
20 |
+
|
21 |
+
# Merge the LoRA adapter into the base model
|
22 |
+
merged_model = adapter_model.merge_and_unload()
|
23 |
+
|
24 |
+
# Save the merged model to Hugging Face (space storage)
|
25 |
+
merged_model.save_pretrained("./merged_model")
|