Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import PyPDF2
|
|
|
6 |
|
7 |
# Set up logging with a dedicated file handler
|
8 |
logger = logging.getLogger('SupportBot')
|
@@ -10,24 +11,36 @@ logger.setLevel(logging.INFO)
|
|
10 |
# Remove any existing handlers to avoid conflicts
|
11 |
if logger.handlers:
|
12 |
logger.handlers.clear()
|
|
|
|
|
|
|
|
|
13 |
# Create a file handler with append mode
|
14 |
-
|
15 |
-
|
16 |
formatter = logging.Formatter('%(asctime)s - %(message)s')
|
17 |
-
|
18 |
-
logger.addHandler(
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Load models
|
21 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
22 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
23 |
|
24 |
-
# Helper function to extract text from PDF
|
25 |
def extract_text_from_pdf(file_path):
|
26 |
text = ""
|
27 |
with open(file_path, "rb") as file:
|
28 |
pdf_reader = PyPDF2.PdfReader(file)
|
29 |
for page in pdf_reader.pages:
|
30 |
-
|
|
|
|
|
31 |
return text
|
32 |
|
33 |
# Find the most relevant section in the document
|
@@ -44,7 +57,7 @@ def find_relevant_section(query, sections, section_embeddings):
|
|
44 |
SIMILARITY_THRESHOLD = 0.4
|
45 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
46 |
logger.info(f"Found relevant section using embeddings (score: {similarity_score})")
|
47 |
-
|
48 |
return best_section
|
49 |
|
50 |
logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
|
@@ -54,11 +67,11 @@ def find_relevant_section(query, sections, section_embeddings):
|
|
54 |
common_words = query_words.intersection(section_words)
|
55 |
if len(common_words) >= 2:
|
56 |
logger.info(f"Keyword match found with common words: {common_words}")
|
57 |
-
|
58 |
return section
|
59 |
|
60 |
logger.info("No good match found. Returning default response.")
|
61 |
-
|
62 |
return "I don’t have enough information to answer that."
|
63 |
|
64 |
# Process the uploaded file
|
@@ -66,20 +79,25 @@ def process_file(file, state):
|
|
66 |
logger.info("Received file upload request")
|
67 |
if file is None:
|
68 |
logger.info("No file uploaded")
|
69 |
-
|
70 |
return [("Bot", "Please upload a file.")], state
|
71 |
|
|
|
72 |
file_path = file.name
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
text = f.read()
|
80 |
else:
|
81 |
-
logger.error(f"Unsupported file format: {
|
82 |
-
|
83 |
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
84 |
|
85 |
sections = text.split('\n\n')
|
@@ -91,8 +109,8 @@ def process_file(file, state):
|
|
91 |
state['feedback_count'] = 0
|
92 |
state['mode'] = 'waiting_for_query'
|
93 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
94 |
-
logger.info(f"File processed successfully: {
|
95 |
-
|
96 |
return state['chat_history'], state
|
97 |
|
98 |
# Handle user input (queries and feedback)
|
@@ -100,7 +118,7 @@ def handle_input(user_input, state):
|
|
100 |
if state['mode'] == 'waiting_for_upload':
|
101 |
logger.info("User input received before file upload")
|
102 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
103 |
-
|
104 |
elif state['mode'] == 'waiting_for_query':
|
105 |
query = user_input
|
106 |
logger.info(f"User query: {query}")
|
@@ -117,7 +135,7 @@ def handle_input(user_input, state):
|
|
117 |
state['chat_history'].append(("User", query))
|
118 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
119 |
logger.info(f"Generated answer: {answer}")
|
120 |
-
|
121 |
elif state['mode'] == 'waiting_for_feedback':
|
122 |
feedback = user_input.lower()
|
123 |
logger.info(f"User feedback: {feedback}")
|
@@ -130,7 +148,7 @@ def handle_input(user_input, state):
|
|
130 |
else:
|
131 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
132 |
logger.info("Max feedback iterations (2) reached. Ready for next query.")
|
133 |
-
|
134 |
else:
|
135 |
query = state['current_query']
|
136 |
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
@@ -143,13 +161,13 @@ def handle_input(user_input, state):
|
|
143 |
else:
|
144 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
145 |
logger.info(f"Invalid feedback received: {feedback}")
|
146 |
-
|
147 |
return state['chat_history'], state
|
148 |
state['last_answer'] = adjusted_answer
|
149 |
state['feedback_count'] += 1
|
150 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
151 |
logger.info(f"Updated answer: {adjusted_answer}")
|
152 |
-
|
153 |
return state['chat_history'], state
|
154 |
|
155 |
# Initial state
|
@@ -171,9 +189,10 @@ with gr.Blocks() as demo:
|
|
171 |
chat = gr.Chatbot()
|
172 |
user_input = gr.Textbox(label="Your query or feedback")
|
173 |
submit_btn = gr.Button("Submit")
|
174 |
-
|
|
|
175 |
|
176 |
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
|
177 |
submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
|
178 |
|
179 |
-
demo.launch(share=True)
|
|
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import PyPDF2
|
6 |
+
import os
|
7 |
|
8 |
# Set up logging with a dedicated file handler
|
9 |
logger = logging.getLogger('SupportBot')
|
|
|
11 |
# Remove any existing handlers to avoid conflicts
|
12 |
if logger.handlers:
|
13 |
logger.handlers.clear()
|
14 |
+
|
15 |
+
# Define log file path in a writable directory (/tmp)
|
16 |
+
log_file_path = '/tmp/support_bot_log.txt'
|
17 |
+
|
18 |
# Create a file handler with append mode
|
19 |
+
file_handler = logging.FileHandler(log_file_path, mode='a')
|
20 |
+
file_handler.setLevel(logging.INFO)
|
21 |
formatter = logging.Formatter('%(asctime)s - %(message)s')
|
22 |
+
file_handler.setFormatter(formatter)
|
23 |
+
logger.addHandler(file_handler)
|
24 |
+
|
25 |
+
# Add a stream handler to output logs to the console as well
|
26 |
+
stream_handler = logging.StreamHandler()
|
27 |
+
stream_handler.setLevel(logging.INFO)
|
28 |
+
stream_handler.setFormatter(formatter)
|
29 |
+
logger.addHandler(stream_handler)
|
30 |
|
31 |
# Load models
|
32 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
33 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
34 |
|
35 |
+
# Helper function to extract text from a PDF
|
36 |
def extract_text_from_pdf(file_path):
|
37 |
text = ""
|
38 |
with open(file_path, "rb") as file:
|
39 |
pdf_reader = PyPDF2.PdfReader(file)
|
40 |
for page in pdf_reader.pages:
|
41 |
+
extracted_text = page.extract_text()
|
42 |
+
if extracted_text:
|
43 |
+
text += extracted_text + "\n"
|
44 |
return text
|
45 |
|
46 |
# Find the most relevant section in the document
|
|
|
57 |
SIMILARITY_THRESHOLD = 0.4
|
58 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
59 |
logger.info(f"Found relevant section using embeddings (score: {similarity_score})")
|
60 |
+
file_handler.flush() # Ensure log is written immediately
|
61 |
return best_section
|
62 |
|
63 |
logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
|
|
|
67 |
common_words = query_words.intersection(section_words)
|
68 |
if len(common_words) >= 2:
|
69 |
logger.info(f"Keyword match found with common words: {common_words}")
|
70 |
+
file_handler.flush()
|
71 |
return section
|
72 |
|
73 |
logger.info("No good match found. Returning default response.")
|
74 |
+
file_handler.flush()
|
75 |
return "I don’t have enough information to answer that."
|
76 |
|
77 |
# Process the uploaded file
|
|
|
79 |
logger.info("Received file upload request")
|
80 |
if file is None:
|
81 |
logger.info("No file uploaded")
|
82 |
+
file_handler.flush()
|
83 |
return [("Bot", "Please upload a file.")], state
|
84 |
|
85 |
+
# Save the uploaded file to a temporary location
|
86 |
file_path = file.name
|
87 |
+
temp_file_path = os.path.join("/tmp", os.path.basename(file_path))
|
88 |
+
with open(temp_file_path, "wb") as f:
|
89 |
+
f.write(file.read())
|
90 |
+
|
91 |
+
if temp_file_path.lower().endswith(".pdf"):
|
92 |
+
logger.info(f"Processing PDF file: {temp_file_path}")
|
93 |
+
text = extract_text_from_pdf(temp_file_path)
|
94 |
+
elif temp_file_path.lower().endswith(".txt"):
|
95 |
+
logger.info(f"Processing TXT file: {temp_file_path}")
|
96 |
+
with open(temp_file_path, 'r', encoding='utf-8') as f:
|
97 |
text = f.read()
|
98 |
else:
|
99 |
+
logger.error(f"Unsupported file format: {temp_file_path}")
|
100 |
+
file_handler.flush()
|
101 |
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
102 |
|
103 |
sections = text.split('\n\n')
|
|
|
109 |
state['feedback_count'] = 0
|
110 |
state['mode'] = 'waiting_for_query'
|
111 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
112 |
+
logger.info(f"File processed successfully: {temp_file_path}")
|
113 |
+
file_handler.flush()
|
114 |
return state['chat_history'], state
|
115 |
|
116 |
# Handle user input (queries and feedback)
|
|
|
118 |
if state['mode'] == 'waiting_for_upload':
|
119 |
logger.info("User input received before file upload")
|
120 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
121 |
+
file_handler.flush()
|
122 |
elif state['mode'] == 'waiting_for_query':
|
123 |
query = user_input
|
124 |
logger.info(f"User query: {query}")
|
|
|
135 |
state['chat_history'].append(("User", query))
|
136 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
137 |
logger.info(f"Generated answer: {answer}")
|
138 |
+
file_handler.flush()
|
139 |
elif state['mode'] == 'waiting_for_feedback':
|
140 |
feedback = user_input.lower()
|
141 |
logger.info(f"User feedback: {feedback}")
|
|
|
148 |
else:
|
149 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
150 |
logger.info("Max feedback iterations (2) reached. Ready for next query.")
|
151 |
+
file_handler.flush()
|
152 |
else:
|
153 |
query = state['current_query']
|
154 |
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
|
|
161 |
else:
|
162 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
163 |
logger.info(f"Invalid feedback received: {feedback}")
|
164 |
+
file_handler.flush()
|
165 |
return state['chat_history'], state
|
166 |
state['last_answer'] = adjusted_answer
|
167 |
state['feedback_count'] += 1
|
168 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
169 |
logger.info(f"Updated answer: {adjusted_answer}")
|
170 |
+
file_handler.flush()
|
171 |
return state['chat_history'], state
|
172 |
|
173 |
# Initial state
|
|
|
189 |
chat = gr.Chatbot()
|
190 |
user_input = gr.Textbox(label="Your query or feedback")
|
191 |
submit_btn = gr.Button("Submit")
|
192 |
+
# Point the log file download to the writable log file path
|
193 |
+
log_file = gr.File(label="Download Log File", value=log_file_path)
|
194 |
|
195 |
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
|
196 |
submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
|
197 |
|
198 |
+
demo.launch(share=True)
|