Shriharsh commited on
Commit
03000c3
·
verified ·
1 Parent(s): acc276b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -29
app.py CHANGED
@@ -4,14 +4,18 @@ from transformers import pipeline
4
  from sentence_transformers import SentenceTransformer, util
5
  import PyPDF2
6
 
7
- # Set up logging with immediate writing
8
- logging.basicConfig(
9
- filename='support_bot_log.txt',
10
- level=logging.INFO,
11
- format='%(asctime)s - %(message)s',
12
- force=True # Ensures any existing handlers are replaced and logging starts fresh
13
- )
14
- logger = logging.getLogger()
 
 
 
 
15
 
16
  # Load models
17
  qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
@@ -30,7 +34,7 @@ def extract_text_from_pdf(file_path):
30
  def find_relevant_section(query, sections, section_embeddings):
31
  stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
32
 
33
- # Semantic search
34
  query_embedding = embedder.encode(query, convert_to_tensor=True)
35
  similarities = util.cos_sim(query_embedding, section_embeddings)[0]
36
  best_idx = similarities.argmax().item()
@@ -39,39 +43,43 @@ def find_relevant_section(query, sections, section_embeddings):
39
 
40
  SIMILARITY_THRESHOLD = 0.4
41
  if similarity_score >= SIMILARITY_THRESHOLD:
42
- logger.info(f"Found relevant section using embeddings for query: {query}")
 
43
  return best_section
44
 
45
  logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
46
-
47
- # Keyword-based fallback search with stopword filtering
48
  query_words = {word for word in query.lower().split() if word not in stopwords}
49
  for section in sections:
50
  section_words = {word for word in section.lower().split() if word not in stopwords}
51
  common_words = query_words.intersection(section_words)
52
  if len(common_words) >= 2:
53
- logger.info(f"Keyword match found for query: {query} with common words: {common_words}")
 
54
  return section
55
 
56
- logger.info(f"No good keyword match found. Returning default fallback response.")
 
57
  return "I don’t have enough information to answer that."
58
 
59
- # Process the uploaded file with detailed logging
60
  def process_file(file, state):
 
61
  if file is None:
62
- logger.info("No file uploaded.")
 
63
  return [("Bot", "Please upload a file.")], state
64
 
65
  file_path = file.name
66
  if file_path.lower().endswith(".pdf"):
67
- logger.info(f"Uploaded PDF file: {file_path}")
68
  text = extract_text_from_pdf(file_path)
69
  elif file_path.lower().endswith(".txt"):
70
- logger.info(f"Uploaded TXT file: {file_path}")
71
  with open(file_path, 'r', encoding='utf-8') as f:
72
  text = f.read()
73
  else:
74
  logger.error(f"Unsupported file format: {file_path}")
 
75
  return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
76
 
77
  sections = text.split('\n\n')
@@ -83,16 +91,19 @@ def process_file(file, state):
83
  state['feedback_count'] = 0
84
  state['mode'] = 'waiting_for_query'
85
  state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
86
- logger.info(f"Processed file: {file_path}")
 
87
  return state['chat_history'], state
88
 
89
  # Handle user input (queries and feedback)
90
  def handle_input(user_input, state):
91
  if state['mode'] == 'waiting_for_upload':
 
92
  state['chat_history'].append(("Bot", "Please upload a file first."))
93
- logger.info("User attempted to interact without uploading a file.")
94
  elif state['mode'] == 'waiting_for_query':
95
  query = user_input
 
96
  state['current_query'] = query
97
  state['feedback_count'] = 0
98
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
@@ -105,34 +116,40 @@ def handle_input(user_input, state):
105
  state['mode'] = 'waiting_for_feedback'
106
  state['chat_history'].append(("User", query))
107
  state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
108
- logger.info(f"Query: {query}, Answer: {answer}")
 
109
  elif state['mode'] == 'waiting_for_feedback':
110
  feedback = user_input.lower()
 
111
  state['chat_history'].append(("User", feedback))
112
- logger.info(f"Feedback: {feedback}")
113
  if feedback == "good" or state['feedback_count'] >= 2:
114
  state['mode'] = 'waiting_for_query'
115
  if feedback == "good":
116
  state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
117
- logger.info("Feedback accepted as 'good'. Waiting for next query.")
118
  else:
119
  state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
120
- logger.info("Max feedback iterations reached. Waiting for next query.")
 
121
  else:
122
  query = state['current_query']
123
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
124
  if feedback == "too vague":
125
  adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
 
126
  elif feedback == "not helpful":
127
  adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
 
128
  else:
129
  state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
130
  logger.info(f"Invalid feedback received: {feedback}")
 
131
  return state['chat_history'], state
132
  state['last_answer'] = adjusted_answer
133
  state['feedback_count'] += 1
134
  state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
135
- logger.info(f"Adjusted answer: {adjusted_answer}")
 
136
  return state['chat_history'], state
137
 
138
  # Initial state
@@ -154,12 +171,9 @@ with gr.Blocks() as demo:
154
  chat = gr.Chatbot()
155
  user_input = gr.Textbox(label="Your query or feedback")
156
  submit_btn = gr.Button("Submit")
157
- log_file = gr.File(label="Download Log File", value="support_bot_log.txt") # Added for log download
158
 
159
- # Process file upload
160
  file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
161
-
162
- # Handle user input and clear the textbox
163
  submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
164
 
165
  demo.launch(share=True)
 
4
  from sentence_transformers import SentenceTransformer, util
5
  import PyPDF2
6
 
7
+ # Set up logging with a dedicated file handler
8
+ logger = logging.getLogger('SupportBot')
9
+ logger.setLevel(logging.INFO)
10
+ # Remove any existing handlers to avoid conflicts
11
+ if logger.handlers:
12
+ logger.handlers.clear()
13
+ # Create a file handler with append mode
14
+ handler = logging.FileHandler('support_bot_log.txt', mode='a')
15
+ handler.setLevel(logging.INFO)
16
+ formatter = logging.Formatter('%(asctime)s - %(message)s')
17
+ handler.setFormatter(formatter)
18
+ logger.addHandler(handler)
19
 
20
  # Load models
21
  qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
 
34
  def find_relevant_section(query, sections, section_embeddings):
35
  stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
36
 
37
+ logger.info(f"Searching for relevant section for query: {query}")
38
  query_embedding = embedder.encode(query, convert_to_tensor=True)
39
  similarities = util.cos_sim(query_embedding, section_embeddings)[0]
40
  best_idx = similarities.argmax().item()
 
43
 
44
  SIMILARITY_THRESHOLD = 0.4
45
  if similarity_score >= SIMILARITY_THRESHOLD:
46
+ logger.info(f"Found relevant section using embeddings (score: {similarity_score})")
47
+ handler.flush() # Ensure log is written immediately
48
  return best_section
49
 
50
  logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
 
 
51
  query_words = {word for word in query.lower().split() if word not in stopwords}
52
  for section in sections:
53
  section_words = {word for word in section.lower().split() if word not in stopwords}
54
  common_words = query_words.intersection(section_words)
55
  if len(common_words) >= 2:
56
+ logger.info(f"Keyword match found with common words: {common_words}")
57
+ handler.flush()
58
  return section
59
 
60
+ logger.info("No good match found. Returning default response.")
61
+ handler.flush()
62
  return "I don’t have enough information to answer that."
63
 
64
+ # Process the uploaded file
65
  def process_file(file, state):
66
+ logger.info("Received file upload request")
67
  if file is None:
68
+ logger.info("No file uploaded")
69
+ handler.flush()
70
  return [("Bot", "Please upload a file.")], state
71
 
72
  file_path = file.name
73
  if file_path.lower().endswith(".pdf"):
74
+ logger.info(f"Processing PDF file: {file_path}")
75
  text = extract_text_from_pdf(file_path)
76
  elif file_path.lower().endswith(".txt"):
77
+ logger.info(f"Processing TXT file: {file_path}")
78
  with open(file_path, 'r', encoding='utf-8') as f:
79
  text = f.read()
80
  else:
81
  logger.error(f"Unsupported file format: {file_path}")
82
+ handler.flush()
83
  return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
84
 
85
  sections = text.split('\n\n')
 
91
  state['feedback_count'] = 0
92
  state['mode'] = 'waiting_for_query'
93
  state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
94
+ logger.info(f"File processed successfully: {file_path}")
95
+ handler.flush()
96
  return state['chat_history'], state
97
 
98
  # Handle user input (queries and feedback)
99
  def handle_input(user_input, state):
100
  if state['mode'] == 'waiting_for_upload':
101
+ logger.info("User input received before file upload")
102
  state['chat_history'].append(("Bot", "Please upload a file first."))
103
+ handler.flush()
104
  elif state['mode'] == 'waiting_for_query':
105
  query = user_input
106
+ logger.info(f"User query: {query}")
107
  state['current_query'] = query
108
  state['feedback_count'] = 0
109
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
 
116
  state['mode'] = 'waiting_for_feedback'
117
  state['chat_history'].append(("User", query))
118
  state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
119
+ logger.info(f"Generated answer: {answer}")
120
+ handler.flush()
121
  elif state['mode'] == 'waiting_for_feedback':
122
  feedback = user_input.lower()
123
+ logger.info(f"User feedback: {feedback}")
124
  state['chat_history'].append(("User", feedback))
 
125
  if feedback == "good" or state['feedback_count'] >= 2:
126
  state['mode'] = 'waiting_for_query'
127
  if feedback == "good":
128
  state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
129
+ logger.info("Feedback 'good' received. Ready for next query.")
130
  else:
131
  state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
132
+ logger.info("Max feedback iterations (2) reached. Ready for next query.")
133
+ handler.flush()
134
  else:
135
  query = state['current_query']
136
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
137
  if feedback == "too vague":
138
  adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
139
+ logger.info("Feedback 'too vague'. Providing context.")
140
  elif feedback == "not helpful":
141
  adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
142
+ logger.info("Feedback 'not helpful'. Re-searching with modified query.")
143
  else:
144
  state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
145
  logger.info(f"Invalid feedback received: {feedback}")
146
+ handler.flush()
147
  return state['chat_history'], state
148
  state['last_answer'] = adjusted_answer
149
  state['feedback_count'] += 1
150
  state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
151
+ logger.info(f"Updated answer: {adjusted_answer}")
152
+ handler.flush()
153
  return state['chat_history'], state
154
 
155
  # Initial state
 
171
  chat = gr.Chatbot()
172
  user_input = gr.Textbox(label="Your query or feedback")
173
  submit_btn = gr.Button("Submit")
174
+ log_file = gr.File(label="Download Log File", value="support_bot_log.txt")
175
 
 
176
  file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
 
 
177
  submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
178
 
179
  demo.launch(share=True)