Shriharsh commited on
Commit
acc276b
·
verified ·
1 Parent(s): 1f03aa4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -19
app.py CHANGED
@@ -4,13 +4,14 @@ from transformers import pipeline
4
  from sentence_transformers import SentenceTransformer, util
5
  import PyPDF2
6
 
7
- # Set up logging with immediate flushing
 
 
 
 
 
 
8
  logger = logging.getLogger()
9
- logger.setLevel(logging.INFO)
10
- handler = logging.FileHandler('support_bot_log.txt', mode='a', buffering=1) # Line-buffered for immediate writes
11
- formatter = logging.Formatter('%(asctime)s - %(message)s')
12
- handler.setFormatter(formatter)
13
- logger.addHandler(handler)
14
 
15
  # Load models
16
  qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
@@ -38,10 +39,10 @@ def find_relevant_section(query, sections, section_embeddings):
38
 
39
  SIMILARITY_THRESHOLD = 0.4
40
  if similarity_score >= SIMILARITY_THRESHOLD:
41
- logging.info(f"Found relevant section using embeddings for query: {query}")
42
  return best_section
43
 
44
- logging.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
45
 
46
  # Keyword-based fallback search with stopword filtering
47
  query_words = {word for word in query.lower().split() if word not in stopwords}
@@ -49,28 +50,28 @@ def find_relevant_section(query, sections, section_embeddings):
49
  section_words = {word for word in section.lower().split() if word not in stopwords}
50
  common_words = query_words.intersection(section_words)
51
  if len(common_words) >= 2:
52
- logging.info(f"Keyword match found for query: {query} with common words: {common_words}")
53
  return section
54
 
55
- logging.info(f"No good keyword match found. Returning default fallback response.")
56
  return "I don’t have enough information to answer that."
57
 
58
  # Process the uploaded file with detailed logging
59
  def process_file(file, state):
60
  if file is None:
61
- logging.info("No file uploaded.")
62
  return [("Bot", "Please upload a file.")], state
63
 
64
  file_path = file.name
65
  if file_path.lower().endswith(".pdf"):
66
- logging.info(f"Uploaded PDF file: {file_path}")
67
  text = extract_text_from_pdf(file_path)
68
  elif file_path.lower().endswith(".txt"):
69
- logging.info(f"Uploaded TXT file: {file_path}")
70
  with open(file_path, 'r', encoding='utf-8') as f:
71
  text = f.read()
72
  else:
73
- logging.error(f"Unsupported file format: {file_path}")
74
  return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
75
 
76
  sections = text.split('\n\n')
@@ -82,14 +83,14 @@ def process_file(file, state):
82
  state['feedback_count'] = 0
83
  state['mode'] = 'waiting_for_query'
84
  state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
85
- logging.info(f"Processed file: {file_path}")
86
  return state['chat_history'], state
87
 
88
  # Handle user input (queries and feedback)
89
  def handle_input(user_input, state):
90
  if state['mode'] == 'waiting_for_upload':
91
  state['chat_history'].append(("Bot", "Please upload a file first."))
92
- logging.info("User attempted to interact without uploading a file.")
93
  elif state['mode'] == 'waiting_for_query':
94
  query = user_input
95
  state['current_query'] = query
@@ -104,17 +105,19 @@ def handle_input(user_input, state):
104
  state['mode'] = 'waiting_for_feedback'
105
  state['chat_history'].append(("User", query))
106
  state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
107
- logging.info(f"Query: {query}, Answer: {answer}")
108
  elif state['mode'] == 'waiting_for_feedback':
109
  feedback = user_input.lower()
110
  state['chat_history'].append(("User", feedback))
111
- logging.info(f"Feedback: {feedback}")
112
  if feedback == "good" or state['feedback_count'] >= 2:
113
  state['mode'] = 'waiting_for_query'
114
  if feedback == "good":
115
  state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
 
116
  else:
117
  state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
 
118
  else:
119
  query = state['current_query']
120
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
@@ -124,11 +127,12 @@ def handle_input(user_input, state):
124
  adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
125
  else:
126
  state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
 
127
  return state['chat_history'], state
128
  state['last_answer'] = adjusted_answer
129
  state['feedback_count'] += 1
130
  state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
131
- logging.info(f"Adjusted answer: {adjusted_answer}")
132
  return state['chat_history'], state
133
 
134
  # Initial state
 
4
  from sentence_transformers import SentenceTransformer, util
5
  import PyPDF2
6
 
7
+ # Set up logging with immediate writing
8
+ logging.basicConfig(
9
+ filename='support_bot_log.txt',
10
+ level=logging.INFO,
11
+ format='%(asctime)s - %(message)s',
12
+ force=True # Ensures any existing handlers are replaced and logging starts fresh
13
+ )
14
  logger = logging.getLogger()
 
 
 
 
 
15
 
16
  # Load models
17
  qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
 
39
 
40
  SIMILARITY_THRESHOLD = 0.4
41
  if similarity_score >= SIMILARITY_THRESHOLD:
42
+ logger.info(f"Found relevant section using embeddings for query: {query}")
43
  return best_section
44
 
45
+ logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
46
 
47
  # Keyword-based fallback search with stopword filtering
48
  query_words = {word for word in query.lower().split() if word not in stopwords}
 
50
  section_words = {word for word in section.lower().split() if word not in stopwords}
51
  common_words = query_words.intersection(section_words)
52
  if len(common_words) >= 2:
53
+ logger.info(f"Keyword match found for query: {query} with common words: {common_words}")
54
  return section
55
 
56
+ logger.info(f"No good keyword match found. Returning default fallback response.")
57
  return "I don’t have enough information to answer that."
58
 
59
  # Process the uploaded file with detailed logging
60
  def process_file(file, state):
61
  if file is None:
62
+ logger.info("No file uploaded.")
63
  return [("Bot", "Please upload a file.")], state
64
 
65
  file_path = file.name
66
  if file_path.lower().endswith(".pdf"):
67
+ logger.info(f"Uploaded PDF file: {file_path}")
68
  text = extract_text_from_pdf(file_path)
69
  elif file_path.lower().endswith(".txt"):
70
+ logger.info(f"Uploaded TXT file: {file_path}")
71
  with open(file_path, 'r', encoding='utf-8') as f:
72
  text = f.read()
73
  else:
74
+ logger.error(f"Unsupported file format: {file_path}")
75
  return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
76
 
77
  sections = text.split('\n\n')
 
83
  state['feedback_count'] = 0
84
  state['mode'] = 'waiting_for_query'
85
  state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
86
+ logger.info(f"Processed file: {file_path}")
87
  return state['chat_history'], state
88
 
89
  # Handle user input (queries and feedback)
90
  def handle_input(user_input, state):
91
  if state['mode'] == 'waiting_for_upload':
92
  state['chat_history'].append(("Bot", "Please upload a file first."))
93
+ logger.info("User attempted to interact without uploading a file.")
94
  elif state['mode'] == 'waiting_for_query':
95
  query = user_input
96
  state['current_query'] = query
 
105
  state['mode'] = 'waiting_for_feedback'
106
  state['chat_history'].append(("User", query))
107
  state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
108
+ logger.info(f"Query: {query}, Answer: {answer}")
109
  elif state['mode'] == 'waiting_for_feedback':
110
  feedback = user_input.lower()
111
  state['chat_history'].append(("User", feedback))
112
+ logger.info(f"Feedback: {feedback}")
113
  if feedback == "good" or state['feedback_count'] >= 2:
114
  state['mode'] = 'waiting_for_query'
115
  if feedback == "good":
116
  state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
117
+ logger.info("Feedback accepted as 'good'. Waiting for next query.")
118
  else:
119
  state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
120
+ logger.info("Max feedback iterations reached. Waiting for next query.")
121
  else:
122
  query = state['current_query']
123
  context = find_relevant_section(query, state['sections'], state['section_embeddings'])
 
127
  adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
128
  else:
129
  state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
130
+ logger.info(f"Invalid feedback received: {feedback}")
131
  return state['chat_history'], state
132
  state['last_answer'] = adjusted_answer
133
  state['feedback_count'] += 1
134
  state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
135
+ logger.info(f"Adjusted answer: {adjusted_answer}")
136
  return state['chat_history'], state
137
 
138
  # Initial state