Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,14 @@ from transformers import pipeline
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import PyPDF2
|
6 |
|
7 |
-
# Set up logging with immediate
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
logger = logging.getLogger()
|
9 |
-
logger.setLevel(logging.INFO)
|
10 |
-
handler = logging.FileHandler('support_bot_log.txt', mode='a', buffering=1) # Line-buffered for immediate writes
|
11 |
-
formatter = logging.Formatter('%(asctime)s - %(message)s')
|
12 |
-
handler.setFormatter(formatter)
|
13 |
-
logger.addHandler(handler)
|
14 |
|
15 |
# Load models
|
16 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
@@ -38,10 +39,10 @@ def find_relevant_section(query, sections, section_embeddings):
|
|
38 |
|
39 |
SIMILARITY_THRESHOLD = 0.4
|
40 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
41 |
-
|
42 |
return best_section
|
43 |
|
44 |
-
|
45 |
|
46 |
# Keyword-based fallback search with stopword filtering
|
47 |
query_words = {word for word in query.lower().split() if word not in stopwords}
|
@@ -49,28 +50,28 @@ def find_relevant_section(query, sections, section_embeddings):
|
|
49 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
50 |
common_words = query_words.intersection(section_words)
|
51 |
if len(common_words) >= 2:
|
52 |
-
|
53 |
return section
|
54 |
|
55 |
-
|
56 |
return "I don’t have enough information to answer that."
|
57 |
|
58 |
# Process the uploaded file with detailed logging
|
59 |
def process_file(file, state):
|
60 |
if file is None:
|
61 |
-
|
62 |
return [("Bot", "Please upload a file.")], state
|
63 |
|
64 |
file_path = file.name
|
65 |
if file_path.lower().endswith(".pdf"):
|
66 |
-
|
67 |
text = extract_text_from_pdf(file_path)
|
68 |
elif file_path.lower().endswith(".txt"):
|
69 |
-
|
70 |
with open(file_path, 'r', encoding='utf-8') as f:
|
71 |
text = f.read()
|
72 |
else:
|
73 |
-
|
74 |
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
75 |
|
76 |
sections = text.split('\n\n')
|
@@ -82,14 +83,14 @@ def process_file(file, state):
|
|
82 |
state['feedback_count'] = 0
|
83 |
state['mode'] = 'waiting_for_query'
|
84 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
85 |
-
|
86 |
return state['chat_history'], state
|
87 |
|
88 |
# Handle user input (queries and feedback)
|
89 |
def handle_input(user_input, state):
|
90 |
if state['mode'] == 'waiting_for_upload':
|
91 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
92 |
-
|
93 |
elif state['mode'] == 'waiting_for_query':
|
94 |
query = user_input
|
95 |
state['current_query'] = query
|
@@ -104,17 +105,19 @@ def handle_input(user_input, state):
|
|
104 |
state['mode'] = 'waiting_for_feedback'
|
105 |
state['chat_history'].append(("User", query))
|
106 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
107 |
-
|
108 |
elif state['mode'] == 'waiting_for_feedback':
|
109 |
feedback = user_input.lower()
|
110 |
state['chat_history'].append(("User", feedback))
|
111 |
-
|
112 |
if feedback == "good" or state['feedback_count'] >= 2:
|
113 |
state['mode'] = 'waiting_for_query'
|
114 |
if feedback == "good":
|
115 |
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
|
|
|
116 |
else:
|
117 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
|
|
118 |
else:
|
119 |
query = state['current_query']
|
120 |
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
@@ -124,11 +127,12 @@ def handle_input(user_input, state):
|
|
124 |
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
|
125 |
else:
|
126 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
|
|
127 |
return state['chat_history'], state
|
128 |
state['last_answer'] = adjusted_answer
|
129 |
state['feedback_count'] += 1
|
130 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
131 |
-
|
132 |
return state['chat_history'], state
|
133 |
|
134 |
# Initial state
|
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import PyPDF2
|
6 |
|
7 |
+
# Set up logging with immediate writing
|
8 |
+
logging.basicConfig(
|
9 |
+
filename='support_bot_log.txt',
|
10 |
+
level=logging.INFO,
|
11 |
+
format='%(asctime)s - %(message)s',
|
12 |
+
force=True # Ensures any existing handlers are replaced and logging starts fresh
|
13 |
+
)
|
14 |
logger = logging.getLogger()
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Load models
|
17 |
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
|
|
39 |
|
40 |
SIMILARITY_THRESHOLD = 0.4
|
41 |
if similarity_score >= SIMILARITY_THRESHOLD:
|
42 |
+
logger.info(f"Found relevant section using embeddings for query: {query}")
|
43 |
return best_section
|
44 |
|
45 |
+
logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
|
46 |
|
47 |
# Keyword-based fallback search with stopword filtering
|
48 |
query_words = {word for word in query.lower().split() if word not in stopwords}
|
|
|
50 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
51 |
common_words = query_words.intersection(section_words)
|
52 |
if len(common_words) >= 2:
|
53 |
+
logger.info(f"Keyword match found for query: {query} with common words: {common_words}")
|
54 |
return section
|
55 |
|
56 |
+
logger.info(f"No good keyword match found. Returning default fallback response.")
|
57 |
return "I don’t have enough information to answer that."
|
58 |
|
59 |
# Process the uploaded file with detailed logging
|
60 |
def process_file(file, state):
|
61 |
if file is None:
|
62 |
+
logger.info("No file uploaded.")
|
63 |
return [("Bot", "Please upload a file.")], state
|
64 |
|
65 |
file_path = file.name
|
66 |
if file_path.lower().endswith(".pdf"):
|
67 |
+
logger.info(f"Uploaded PDF file: {file_path}")
|
68 |
text = extract_text_from_pdf(file_path)
|
69 |
elif file_path.lower().endswith(".txt"):
|
70 |
+
logger.info(f"Uploaded TXT file: {file_path}")
|
71 |
with open(file_path, 'r', encoding='utf-8') as f:
|
72 |
text = f.read()
|
73 |
else:
|
74 |
+
logger.error(f"Unsupported file format: {file_path}")
|
75 |
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
|
76 |
|
77 |
sections = text.split('\n\n')
|
|
|
83 |
state['feedback_count'] = 0
|
84 |
state['mode'] = 'waiting_for_query'
|
85 |
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
|
86 |
+
logger.info(f"Processed file: {file_path}")
|
87 |
return state['chat_history'], state
|
88 |
|
89 |
# Handle user input (queries and feedback)
|
90 |
def handle_input(user_input, state):
|
91 |
if state['mode'] == 'waiting_for_upload':
|
92 |
state['chat_history'].append(("Bot", "Please upload a file first."))
|
93 |
+
logger.info("User attempted to interact without uploading a file.")
|
94 |
elif state['mode'] == 'waiting_for_query':
|
95 |
query = user_input
|
96 |
state['current_query'] = query
|
|
|
105 |
state['mode'] = 'waiting_for_feedback'
|
106 |
state['chat_history'].append(("User", query))
|
107 |
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
|
108 |
+
logger.info(f"Query: {query}, Answer: {answer}")
|
109 |
elif state['mode'] == 'waiting_for_feedback':
|
110 |
feedback = user_input.lower()
|
111 |
state['chat_history'].append(("User", feedback))
|
112 |
+
logger.info(f"Feedback: {feedback}")
|
113 |
if feedback == "good" or state['feedback_count'] >= 2:
|
114 |
state['mode'] = 'waiting_for_query'
|
115 |
if feedback == "good":
|
116 |
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
|
117 |
+
logger.info("Feedback accepted as 'good'. Waiting for next query.")
|
118 |
else:
|
119 |
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
|
120 |
+
logger.info("Max feedback iterations reached. Waiting for next query.")
|
121 |
else:
|
122 |
query = state['current_query']
|
123 |
context = find_relevant_section(query, state['sections'], state['section_embeddings'])
|
|
|
127 |
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
|
128 |
else:
|
129 |
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
|
130 |
+
logger.info(f"Invalid feedback received: {feedback}")
|
131 |
return state['chat_history'], state
|
132 |
state['last_answer'] = adjusted_answer
|
133 |
state['feedback_count'] += 1
|
134 |
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
|
135 |
+
logger.info(f"Adjusted answer: {adjusted_answer}")
|
136 |
return state['chat_history'], state
|
137 |
|
138 |
# Initial state
|