Shriharsh's picture
Update app.py
e367093 verified
raw
history blame
7.76 kB
import logging
import os
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2
# Set up logging: we write logs to /tmp so that it's writable on Spaces.
log_file_path = "/tmp/support_bot_log.txt"
logging.basicConfig(filename=log_file_path, level=logging.INFO, format='%(asctime)s - %(message)s')
class SupportBotAgent:
def __init__(self, document_path):
# Load a pre-trained question-answering model
self.qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
# Set up an embedding model for finding relevant sections
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
# Load the document text and split it into sections (by paragraphs)
self.document_text = self.load_document(document_path)
self.sections = self.document_text.split('\n\n')
self.section_embeddings = self.embedder.encode(self.sections, convert_to_tensor=True)
logging.info(f"Loaded document: {document_path}")
def load_document(self, path):
"""Loads and extracts text from a TXT or PDF file."""
if path.lower().endswith(".txt"):
file_type = "Text File"
with open(path, 'r', encoding='utf-8') as file:
text = file.read()
elif path.lower().endswith(".pdf"):
file_type = "PDF File"
text = ""
with open(path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
else:
file_type = "Unsupported Format"
logging.error(f"Unsupported file format: {path}")
raise ValueError("Unsupported file format. Please provide a TXT or PDF file.")
logging.info(f"Loaded {file_type}: {path}")
return text
def find_relevant_section(self, query):
"""
First uses semantic similarity. If similarity is too low, falls back to a keyword search.
"""
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
query_embedding = self.embedder.encode(query, convert_to_tensor=True)
similarities = util.cos_sim(query_embedding, self.section_embeddings)[0]
best_idx = similarities.argmax().item()
best_section = self.sections[best_idx]
similarity_score = similarities[best_idx].item()
SIMILARITY_THRESHOLD = 0.4
if similarity_score >= SIMILARITY_THRESHOLD:
logging.info(f"Found relevant section using embeddings for query: {query}")
return best_section
logging.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
query_words = {word for word in query.lower().split() if word not in stopwords}
for section in self.sections:
section_words = {word for word in section.lower().split() if word not in stopwords}
common_words = query_words.intersection(section_words)
if len(common_words) >= 2:
logging.info(f"Keyword match found for query: {query} with common words: {common_words}")
return section
logging.info(f"No good keyword match found. Returning default fallback response.")
return "I don’t have enough information to answer that."
def answer_query(self, query):
context = self.find_relevant_section(query)
if not context:
answer = "I don’t have enough information to answer that."
else:
result = self.qa_model(question=query, context=context, max_answer_len=50)
answer = result["answer"]
logging.info(f"Answer for query '{query}': {answer}")
return answer
def adjust_response(self, query, response, feedback):
"""Modify the response based on user feedback."""
if feedback == "too vague":
context = self.find_relevant_section(query)
adjusted_response = f"{response}\n\n(More details:\n{context[:500]}...)"
elif feedback == "not helpful":
adjusted_response = self.answer_query(query + " Please provide more detailed information with examples.")
else:
adjusted_response = response
logging.info(f"Adjusted answer for query '{query}': {adjusted_response}")
return adjusted_response
# --- Gradio Functions and App Workflow ---
def process_file(file, state):
"""Handles the file upload and initializes the SupportBotAgent."""
if file is None:
logging.info("No file uploaded")
return [("Bot", "Please upload a TXT or PDF file.")], state
# Save the uploaded file to /tmp
temp_path = os.path.join("/tmp", file.name)
with open(temp_path, "wb") as f:
f.write(file.read())
try:
state["agent"] = SupportBotAgent(temp_path)
except Exception as e:
return [("Bot", f"Error processing file: {str(e)}")], state
state["chat_history"] = [("Bot", "File loaded successfully. Enter your query (or type 'exit' to end):")]
state["mode"] = "query"
state["last_query"] = ""
state["last_answer"] = ""
state["feedback_count"] = 0
return state["chat_history"], state
def process_input(user_input, state):
"""
Processes user input as either a query or feedback based on the current mode.
Typing 'exit' stops the session.
"""
if state.get("mode", "query") == "ended":
return state["chat_history"], state
if user_input.lower() == "exit":
state["chat_history"].append(("Bot", "Session ended. You may now download the log file."))
state["mode"] = "ended"
return state["chat_history"], state
if state["mode"] == "query":
state["last_query"] = user_input
answer = state["agent"].answer_query(user_input)
state["last_answer"] = answer
state["feedback_count"] = 0
state["chat_history"].append(("User", user_input))
state["chat_history"].append(("Bot", f"Answer: {answer}\nPlease provide feedback (good, too vague, not helpful):"))
state["mode"] = "feedback"
elif state["mode"] == "feedback":
feedback = user_input.lower()
state["chat_history"].append(("User", feedback))
if feedback == "good" or state["feedback_count"] >= 1:
state["chat_history"].append(("Bot", "Thank you for your feedback. Enter your next query (or type 'exit' to end):"))
state["mode"] = "query"
else:
new_answer = state["agent"].adjust_response(state["last_query"], state["last_answer"], feedback)
state["last_answer"] = new_answer
state["feedback_count"] += 1
state["chat_history"].append(("Bot", f"Updated Answer: {new_answer}\nPlease provide feedback (good, too vague, not helpful):"))
return state["chat_history"], state
# --- Gradio UI Setup ---
with gr.Blocks() as demo:
state = gr.State({"mode": "idle"})
gr.Markdown("## Customer Support Bot with Document Training")
file_upload = gr.File(label="Upload TXT or PDF file")
chat = gr.Chatbot()
user_input = gr.Textbox(label="Enter your query or feedback")
submit_btn = gr.Button("Submit")
log_file = gr.File(label="Download Log File", file_count="single", interactive=False, value=log_file_path)
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
submit_btn.click(process_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
demo.launch(share=True)