import logging import os import gradio as gr from transformers import pipeline from sentence_transformers import SentenceTransformer, util import PyPDF2 # Set up logging: we write logs to /tmp so that it's writable on Spaces. log_file_path = "/tmp/support_bot_log.txt" logging.basicConfig(filename=log_file_path, level=logging.INFO, format='%(asctime)s - %(message)s') class SupportBotAgent: def __init__(self, document_path): # Load a pre-trained question-answering model self.qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") # Set up an embedding model for finding relevant sections self.embedder = SentenceTransformer('all-MiniLM-L6-v2') # Load the document text and split it into sections (by paragraphs) self.document_text = self.load_document(document_path) self.sections = self.document_text.split('\n\n') self.section_embeddings = self.embedder.encode(self.sections, convert_to_tensor=True) logging.info(f"Loaded document: {document_path}") def load_document(self, path): """Loads and extracts text from a TXT or PDF file.""" if path.lower().endswith(".txt"): file_type = "Text File" with open(path, 'r', encoding='utf-8') as file: text = file.read() elif path.lower().endswith(".pdf"): file_type = "PDF File" text = "" with open(path, "rb") as file: pdf_reader = PyPDF2.PdfReader(file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" else: file_type = "Unsupported Format" logging.error(f"Unsupported file format: {path}") raise ValueError("Unsupported file format. Please provide a TXT or PDF file.") logging.info(f"Loaded {file_type}: {path}") return text def find_relevant_section(self, query): """ First uses semantic similarity. If similarity is too low, falls back to a keyword search. """ stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"} query_embedding = self.embedder.encode(query, convert_to_tensor=True) similarities = util.cos_sim(query_embedding, self.section_embeddings)[0] best_idx = similarities.argmax().item() best_section = self.sections[best_idx] similarity_score = similarities[best_idx].item() SIMILARITY_THRESHOLD = 0.4 if similarity_score >= SIMILARITY_THRESHOLD: logging.info(f"Found relevant section using embeddings for query: {query}") return best_section logging.info(f"Low similarity ({similarity_score}). Falling back to keyword search.") query_words = {word for word in query.lower().split() if word not in stopwords} for section in self.sections: section_words = {word for word in section.lower().split() if word not in stopwords} common_words = query_words.intersection(section_words) if len(common_words) >= 2: logging.info(f"Keyword match found for query: {query} with common words: {common_words}") return section logging.info(f"No good keyword match found. Returning default fallback response.") return "I don’t have enough information to answer that." def answer_query(self, query): context = self.find_relevant_section(query) if not context: answer = "I don’t have enough information to answer that." else: result = self.qa_model(question=query, context=context, max_answer_len=50) answer = result["answer"] logging.info(f"Answer for query '{query}': {answer}") return answer def adjust_response(self, query, response, feedback): """Modify the response based on user feedback.""" if feedback == "too vague": context = self.find_relevant_section(query) adjusted_response = f"{response}\n\n(More details:\n{context[:500]}...)" elif feedback == "not helpful": adjusted_response = self.answer_query(query + " Please provide more detailed information with examples.") else: adjusted_response = response logging.info(f"Adjusted answer for query '{query}': {adjusted_response}") return adjusted_response # --- Gradio Functions and App Workflow --- def process_file(file, state): """Handles the file upload and initializes the SupportBotAgent.""" if file is None: logging.info("No file uploaded") return [("Bot", "Please upload a TXT or PDF file.")], state # Save the uploaded file to /tmp temp_path = os.path.join("/tmp", file.name) with open(temp_path, "wb") as f: f.write(file.read()) try: state["agent"] = SupportBotAgent(temp_path) except Exception as e: return [("Bot", f"Error processing file: {str(e)}")], state state["chat_history"] = [("Bot", "File loaded successfully. Enter your query (or type 'exit' to end):")] state["mode"] = "query" state["last_query"] = "" state["last_answer"] = "" state["feedback_count"] = 0 return state["chat_history"], state def process_input(user_input, state): """ Processes user input as either a query or feedback based on the current mode. Typing 'exit' stops the session. """ if state.get("mode", "query") == "ended": return state["chat_history"], state if user_input.lower() == "exit": state["chat_history"].append(("Bot", "Session ended. You may now download the log file.")) state["mode"] = "ended" return state["chat_history"], state if state["mode"] == "query": state["last_query"] = user_input answer = state["agent"].answer_query(user_input) state["last_answer"] = answer state["feedback_count"] = 0 state["chat_history"].append(("User", user_input)) state["chat_history"].append(("Bot", f"Answer: {answer}\nPlease provide feedback (good, too vague, not helpful):")) state["mode"] = "feedback" elif state["mode"] == "feedback": feedback = user_input.lower() state["chat_history"].append(("User", feedback)) if feedback == "good" or state["feedback_count"] >= 1: state["chat_history"].append(("Bot", "Thank you for your feedback. Enter your next query (or type 'exit' to end):")) state["mode"] = "query" else: new_answer = state["agent"].adjust_response(state["last_query"], state["last_answer"], feedback) state["last_answer"] = new_answer state["feedback_count"] += 1 state["chat_history"].append(("Bot", f"Updated Answer: {new_answer}\nPlease provide feedback (good, too vague, not helpful):")) return state["chat_history"], state # --- Gradio UI Setup --- with gr.Blocks() as demo: state = gr.State({"mode": "idle"}) gr.Markdown("## Customer Support Bot with Document Training") file_upload = gr.File(label="Upload TXT or PDF file") chat = gr.Chatbot() user_input = gr.Textbox(label="Enter your query or feedback") submit_btn = gr.Button("Submit") log_file = gr.File(label="Download Log File", file_count="single", interactive=False, value=log_file_path) file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state]) submit_btn.click(process_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input) demo.launch(share=True)