Shriharsh's picture
Update app.py
5133aad verified
raw
history blame
10.2 kB
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2
import datetime
import os
# Load models
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
embedder = SentenceTransformer('all-MiniLM-L6-v2')
# Helper function to extract text from PDF
def extract_text_from_pdf(file_path):
text = ""
with open(file_path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
# Find the most relevant section in the document
def find_relevant_section(query, sections, section_embeddings, log_messages):
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
# Semantic search
query_embedding = embedder.encode(query, convert_to_tensor=True)
similarities = util.cos_sim(query_embedding, section_embeddings)[0]
best_idx = similarities.argmax().item()
best_section = sections[best_idx]
similarity_score = similarities[best_idx].item()
SIMILARITY_THRESHOLD = 0.4
if similarity_score >= SIMILARITY_THRESHOLD:
log_messages = log_message(f"Found relevant section using embeddings for query: {query}", log_messages)
return best_section, log_messages
log_messages = log_message(f"Low similarity ({similarity_score}). Falling back to keyword search.", log_messages)
# Keyword-based fallback search with stopword filtering
query_words = {word for word in query.lower().split() if word not in stopwords} # Corrected line
for section in sections:
section_words = {word for word in section.lower().split() if word not in stopwords}
common_words = query_words.intersection(section_words)
if len(common_words) >= 2:
log_messages = log_message(f"Keyword match found for query: {query} with common words: {common_words}", log_messages)
return section, log_messages
log_messages = log_message(f"No good keyword match found. Returning default fallback response.", log_messages)
return "I don’t have enough information to answer that.", log_messages
# Process the uploaded file with detailed logging
def process_file(file, state, log_messages):
if file is None:
log_messages = log_message("No file uploaded.", log_messages)
return [("Bot", "Please upload a file.")], state, log_messages
file_path = file.name
if file_path.lower().endswith(".pdf"):
log_messages = log_message(f"Uploaded PDF file: {file_path}", log_messages)
text = extract_text_from_pdf(file_path)
elif file_path.lower().endswith(".txt"):
log_messages = log_message(f"Uploaded TXT file: {file_path}", log_messages)
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
else:
log_messages = log_message(f"Unsupported file format: {file_path}", log_messages)
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state, log_messages
sections = text.split('\n\n')
section_embeddings = embedder.encode(sections, convert_to_tensor=True)
state['document_text'] = text
state['sections'] = sections
state['section_embeddings'] = section_embeddings
state['current_query'] = None
state['feedback_count'] = 0
state['mode'] = 'waiting_for_query'
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
log_messages = log_message(f"Processed file: {file_path}", log_messages)
return state['chat_history'], state, log_messages
# Handle user input (queries and feedback)
def handle_input(user_input, state, log_messages):
if state['mode'] == 'waiting_for_upload':
state['chat_history'].append(("Bot", "Please upload a file first."))
log_messages = log_message("User attempted to interact without uploading a file.", log_messages)
return state['chat_history'], state, log_messages
elif state['mode'] == 'waiting_for_query':
if user_input.lower() == "exit":
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
state['mode'] = 'exited'
state['chat_history'].append(("User", "exit"))
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
return state['chat_history'], state, log_messages
query = user_input
state['current_query'] = query
state['feedback_count'] = 0
context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
if context == "I don’t have enough information to answer that.":
answer = context
else:
result = qa_model(question=query, context=context)
answer = result["answer"]
state['last_answer'] = answer
state['mode'] = 'waiting_for_feedback'
state['chat_history'].append(("User", query))
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
# Log the query and initial answer here:
log_messages = log_message(f"Query: {query}, Answer: {answer}", log_messages)
elif state['mode'] == 'waiting_for_feedback':
if user_input.lower() == "exit":
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
state['mode'] = 'exited'
state['chat_history'].append(("User", "exit"))
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
return state['chat_history'], state, log_messages
feedback = user_input.lower()
state['chat_history'].append(("User", feedback))
log_messages = log_message(f"Feedback: {feedback}", log_messages)
if feedback == "good" or state['feedback_count'] >= 2:
state['mode'] = 'waiting_for_query'
if feedback == "good":
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
log_messages = log_message("Feedback accepted as 'good'. Waiting for next query.", log_messages)
else:
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
log_messages = log_message("Max feedback iterations reached. Waiting for next query.", log_messages)
else:
query = state['current_query']
context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
if feedback == "too vague":
adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
elif feedback == "not helpful":
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
else:
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
log_messages = log_message(f"Invalid feedback received: {feedback}", log_messages)
return state['chat_history'], state, log_messages
state['last_answer'] = adjusted_answer
state['feedback_count'] += 1
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
log_messages = log_message(f"Adjusted answer: {adjusted_answer}", log_messages)
elif state['mode'] == 'exited':
state['chat_history'].append(("Bot", "Session is over. Please download the log."))
log_messages = log_message("User interacted after exiting.", log_messages)
return state['chat_history'], state, log_messages
# Initial state
initial_state = {
'document_text': None,
'sections': None,
'section_embeddings': None,
'current_query': None,
'feedback_count': 0,
'mode': 'waiting_for_upload',
'chat_history': [("Bot", "Please upload a PDF or TXT file to start.")],
'last_answer': None
}
# Initialize log_messages outside initial_state
log_messages = []
# Logging function to store messages in memory
def log_message(message, log_messages):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp} - {message}"
log_messages.append(log_entry)
return log_messages
# Function to save logs to file
def save_logs_to_file(log_messages):
with open("support_bot_log.txt", "w") as log_file:
for log_message in log_messages:
log_file.write(log_message + "\n")
# Gradio interface
with gr.Blocks() as demo:
state = gr.State(initial_state)
file_upload = gr.File(label="Upload PDF or TXT file")
chat = gr.Chatbot()
user_input = gr.Textbox(label="Your query or feedback")
submit_btn = gr.Button("Submit")
download_log_btn = gr.Button("Download Log File") # Changed to Button
log_file = gr.File(label="Log File") # Keep File for serving
# Process file upload
file_upload.upload(process_file, inputs=[file_upload, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)])
# Handle user input and clear the textbox
submit_btn.click(handle_input, inputs=[user_input, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)]).then(lambda: "", None, user_input)
# Update the log file just before download
download_log_btn.click(
lambda log_messages: "support_bot_log.txt",
inputs=[gr.State(log_messages)],
outputs=[log_file]
)
# Also save logs when user exits
user_input.submit(
lambda user_input, state, log_messages: (
save_logs_to_file(log_messages) if user_input.lower() == "exit" else None,
state
),
[user_input, state, gr.State(log_messages)],
[log_file, state]
)
demo.launch(share=True)