File size: 10,209 Bytes
e764d84 8907b38 428a54e 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 e367093 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 8907b38 033375f 2b61584 8907b38 2b61584 8907b38 2b61584 033375f 8907b38 033375f 2a28b9c 033375f c99e04f 8907b38 033375f 2b61584 8907b38 2b61584 8907b38 2b61584 e764d84 033375f 8907b38 033375f 8907b38 033375f 8907b38 e764d84 033375f 8907b38 033375f 8907b38 033375f 8907b38 2b61584 8907b38 033375f 8907b38 033375f 8907b38 5d20d0c 8907b38 428a54e 8907b38 428a54e 16b939d 8907b38 428a54e 8907b38 428a54e 8907b38 428a54e 033375f e764d84 033375f e764d84 033375f e764d84 16b939d e764d84 033375f 8907b38 e764d84 033375f 8907b38 033375f 428a54e d2debe2 5133aad d2debe2 5133aad d2debe2 428a54e 8907b38 428a54e 8907b38 428a54e 033375f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2
import datetime
import os
# Load models
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
embedder = SentenceTransformer('all-MiniLM-L6-v2')
# Helper function to extract text from PDF
def extract_text_from_pdf(file_path):
text = ""
with open(file_path, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
# Find the most relevant section in the document
def find_relevant_section(query, sections, section_embeddings, log_messages):
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
# Semantic search
query_embedding = embedder.encode(query, convert_to_tensor=True)
similarities = util.cos_sim(query_embedding, section_embeddings)[0]
best_idx = similarities.argmax().item()
best_section = sections[best_idx]
similarity_score = similarities[best_idx].item()
SIMILARITY_THRESHOLD = 0.4
if similarity_score >= SIMILARITY_THRESHOLD:
log_messages = log_message(f"Found relevant section using embeddings for query: {query}", log_messages)
return best_section, log_messages
log_messages = log_message(f"Low similarity ({similarity_score}). Falling back to keyword search.", log_messages)
# Keyword-based fallback search with stopword filtering
query_words = {word for word in query.lower().split() if word not in stopwords} # Corrected line
for section in sections:
section_words = {word for word in section.lower().split() if word not in stopwords}
common_words = query_words.intersection(section_words)
if len(common_words) >= 2:
log_messages = log_message(f"Keyword match found for query: {query} with common words: {common_words}", log_messages)
return section, log_messages
log_messages = log_message(f"No good keyword match found. Returning default fallback response.", log_messages)
return "I don’t have enough information to answer that.", log_messages
# Process the uploaded file with detailed logging
def process_file(file, state, log_messages):
if file is None:
log_messages = log_message("No file uploaded.", log_messages)
return [("Bot", "Please upload a file.")], state, log_messages
file_path = file.name
if file_path.lower().endswith(".pdf"):
log_messages = log_message(f"Uploaded PDF file: {file_path}", log_messages)
text = extract_text_from_pdf(file_path)
elif file_path.lower().endswith(".txt"):
log_messages = log_message(f"Uploaded TXT file: {file_path}", log_messages)
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
else:
log_messages = log_message(f"Unsupported file format: {file_path}", log_messages)
return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state, log_messages
sections = text.split('\n\n')
section_embeddings = embedder.encode(sections, convert_to_tensor=True)
state['document_text'] = text
state['sections'] = sections
state['section_embeddings'] = section_embeddings
state['current_query'] = None
state['feedback_count'] = 0
state['mode'] = 'waiting_for_query'
state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
log_messages = log_message(f"Processed file: {file_path}", log_messages)
return state['chat_history'], state, log_messages
# Handle user input (queries and feedback)
def handle_input(user_input, state, log_messages):
if state['mode'] == 'waiting_for_upload':
state['chat_history'].append(("Bot", "Please upload a file first."))
log_messages = log_message("User attempted to interact without uploading a file.", log_messages)
return state['chat_history'], state, log_messages
elif state['mode'] == 'waiting_for_query':
if user_input.lower() == "exit":
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
state['mode'] = 'exited'
state['chat_history'].append(("User", "exit"))
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
return state['chat_history'], state, log_messages
query = user_input
state['current_query'] = query
state['feedback_count'] = 0
context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
if context == "I don’t have enough information to answer that.":
answer = context
else:
result = qa_model(question=query, context=context)
answer = result["answer"]
state['last_answer'] = answer
state['mode'] = 'waiting_for_feedback'
state['chat_history'].append(("User", query))
state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
# Log the query and initial answer here:
log_messages = log_message(f"Query: {query}, Answer: {answer}", log_messages)
elif state['mode'] == 'waiting_for_feedback':
if user_input.lower() == "exit":
log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
state['mode'] = 'exited'
state['chat_history'].append(("User", "exit"))
state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
return state['chat_history'], state, log_messages
feedback = user_input.lower()
state['chat_history'].append(("User", feedback))
log_messages = log_message(f"Feedback: {feedback}", log_messages)
if feedback == "good" or state['feedback_count'] >= 2:
state['mode'] = 'waiting_for_query'
if feedback == "good":
state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
log_messages = log_message("Feedback accepted as 'good'. Waiting for next query.", log_messages)
else:
state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
log_messages = log_message("Max feedback iterations reached. Waiting for next query.", log_messages)
else:
query = state['current_query']
context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
if feedback == "too vague":
adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
elif feedback == "not helpful":
adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
else:
state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
log_messages = log_message(f"Invalid feedback received: {feedback}", log_messages)
return state['chat_history'], state, log_messages
state['last_answer'] = adjusted_answer
state['feedback_count'] += 1
state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
log_messages = log_message(f"Adjusted answer: {adjusted_answer}", log_messages)
elif state['mode'] == 'exited':
state['chat_history'].append(("Bot", "Session is over. Please download the log."))
log_messages = log_message("User interacted after exiting.", log_messages)
return state['chat_history'], state, log_messages
# Initial state
initial_state = {
'document_text': None,
'sections': None,
'section_embeddings': None,
'current_query': None,
'feedback_count': 0,
'mode': 'waiting_for_upload',
'chat_history': [("Bot", "Please upload a PDF or TXT file to start.")],
'last_answer': None
}
# Initialize log_messages outside initial_state
log_messages = []
# Logging function to store messages in memory
def log_message(message, log_messages):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = f"{timestamp} - {message}"
log_messages.append(log_entry)
return log_messages
# Function to save logs to file
def save_logs_to_file(log_messages):
with open("support_bot_log.txt", "w") as log_file:
for log_message in log_messages:
log_file.write(log_message + "\n")
# Gradio interface
with gr.Blocks() as demo:
state = gr.State(initial_state)
file_upload = gr.File(label="Upload PDF or TXT file")
chat = gr.Chatbot()
user_input = gr.Textbox(label="Your query or feedback")
submit_btn = gr.Button("Submit")
download_log_btn = gr.Button("Download Log File") # Changed to Button
log_file = gr.File(label="Log File") # Keep File for serving
# Process file upload
file_upload.upload(process_file, inputs=[file_upload, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)])
# Handle user input and clear the textbox
submit_btn.click(handle_input, inputs=[user_input, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)]).then(lambda: "", None, user_input)
# Update the log file just before download
download_log_btn.click(
lambda log_messages: "support_bot_log.txt",
inputs=[gr.State(log_messages)],
outputs=[log_file]
)
# Also save logs when user exits
user_input.submit(
lambda user_input, state, log_messages: (
save_logs_to_file(log_messages) if user_input.lower() == "exit" else None,
state
),
[user_input, state, gr.State(log_messages)],
[log_file, state]
)
demo.launch(share=True) |