File size: 10,209 Bytes
e764d84
 
 
 
8907b38
428a54e
033375f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8907b38
033375f
 
 
 
 
 
 
 
 
 
 
8907b38
 
033375f
8907b38
033375f
 
8907b38
 
033375f
 
 
8907b38
 
033375f
8907b38
 
033375f
 
8907b38
e367093
8907b38
 
033375f
 
 
8907b38
033375f
 
8907b38
033375f
 
 
8907b38
 
033375f
 
 
 
 
 
 
 
 
 
8907b38
 
033375f
 
8907b38
033375f
 
8907b38
 
033375f
2b61584
8907b38
2b61584
 
 
8907b38
2b61584
033375f
 
 
8907b38
033375f
 
2a28b9c
033375f
 
 
 
 
 
c99e04f
8907b38
033375f
2b61584
8907b38
2b61584
 
 
8907b38
2b61584
e764d84
033375f
8907b38
033375f
 
 
 
8907b38
033375f
 
8907b38
e764d84
033375f
8907b38
033375f
 
 
 
 
 
8907b38
 
033375f
 
 
8907b38
2b61584
 
8907b38
 
033375f
 
 
 
 
 
 
 
 
 
8907b38
033375f
 
8907b38
5d20d0c
8907b38
428a54e
8907b38
428a54e
 
16b939d
8907b38
428a54e
 
8907b38
428a54e
8907b38
428a54e
 
033375f
e764d84
033375f
 
e764d84
033375f
e764d84
16b939d
 
e764d84
033375f
8907b38
e764d84
033375f
8907b38
033375f
428a54e
d2debe2
5133aad
d2debe2
5133aad
d2debe2
 
 
428a54e
 
 
8907b38
 
428a54e
 
8907b38
428a54e
 
 
033375f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2
import datetime
import os

# Load models
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
embedder = SentenceTransformer('all-MiniLM-L6-v2')

# Helper function to extract text from PDF
def extract_text_from_pdf(file_path):
    text = ""
    with open(file_path, "rb") as file:
        pdf_reader = PyPDF2.PdfReader(file)
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
    return text

# Find the most relevant section in the document
def find_relevant_section(query, sections, section_embeddings, log_messages):
    stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
    
    # Semantic search
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    similarities = util.cos_sim(query_embedding, section_embeddings)[0]
    best_idx = similarities.argmax().item()
    best_section = sections[best_idx]
    similarity_score = similarities[best_idx].item()
    
    SIMILARITY_THRESHOLD = 0.4
    if similarity_score >= SIMILARITY_THRESHOLD:
        log_messages = log_message(f"Found relevant section using embeddings for query: {query}", log_messages)
        return best_section, log_messages
    
    log_messages = log_message(f"Low similarity ({similarity_score}). Falling back to keyword search.", log_messages)
    
    # Keyword-based fallback search with stopword filtering
    query_words = {word for word in query.lower().split() if word not in stopwords}  # Corrected line
    for section in sections:
        section_words = {word for word in section.lower().split() if word not in stopwords}
        common_words = query_words.intersection(section_words)
        if len(common_words) >= 2:
            log_messages = log_message(f"Keyword match found for query: {query} with common words: {common_words}", log_messages)
            return section, log_messages
    
    log_messages = log_message(f"No good keyword match found. Returning default fallback response.", log_messages)
    return "I don’t have enough information to answer that.", log_messages

# Process the uploaded file with detailed logging
def process_file(file, state, log_messages):
    if file is None:
        log_messages = log_message("No file uploaded.", log_messages)
        return [("Bot", "Please upload a file.")], state, log_messages
    
    file_path = file.name
    if file_path.lower().endswith(".pdf"):
        log_messages = log_message(f"Uploaded PDF file: {file_path}", log_messages)
        text = extract_text_from_pdf(file_path)
    elif file_path.lower().endswith(".txt"):
        log_messages = log_message(f"Uploaded TXT file: {file_path}", log_messages)
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
    else:
        log_messages = log_message(f"Unsupported file format: {file_path}", log_messages)
        return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state, log_messages
    
    sections = text.split('\n\n')
    section_embeddings = embedder.encode(sections, convert_to_tensor=True)
    state['document_text'] = text
    state['sections'] = sections
    state['section_embeddings'] = section_embeddings
    state['current_query'] = None
    state['feedback_count'] = 0
    state['mode'] = 'waiting_for_query'
    state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
    log_messages = log_message(f"Processed file: {file_path}", log_messages)
    return state['chat_history'], state, log_messages

# Handle user input (queries and feedback)
def handle_input(user_input, state, log_messages):
    if state['mode'] == 'waiting_for_upload':
        state['chat_history'].append(("Bot", "Please upload a file first."))
        log_messages = log_message("User attempted to interact without uploading a file.", log_messages)
        return state['chat_history'], state, log_messages
    elif state['mode'] == 'waiting_for_query':
        if user_input.lower() == "exit":
            log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
            state['mode'] = 'exited'
            state['chat_history'].append(("User", "exit"))
            state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
            return state['chat_history'], state, log_messages
        
        query = user_input
        state['current_query'] = query
        state['feedback_count'] = 0
        context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
        if context == "I don’t have enough information to answer that.":
            answer = context
        else:
            result = qa_model(question=query, context=context)
            answer = result["answer"]
        state['last_answer'] = answer
        state['mode'] = 'waiting_for_feedback'
        state['chat_history'].append(("User", query))
        state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
        # Log the query and initial answer here:
        log_messages = log_message(f"Query: {query}, Answer: {answer}", log_messages)
    elif state['mode'] == 'waiting_for_feedback':
        if user_input.lower() == "exit":
            log_messages = log_message("User entered 'exit'. Ending session.", log_messages)
            state['mode'] = 'exited'
            state['chat_history'].append(("User", "exit"))
            state['chat_history'].append(("Bot", "Session ended. You can download the log file."))
            return state['chat_history'], state, log_messages
        
        feedback = user_input.lower()
        state['chat_history'].append(("User", feedback))
        log_messages = log_message(f"Feedback: {feedback}", log_messages)
        if feedback == "good" or state['feedback_count'] >= 2:
            state['mode'] = 'waiting_for_query'
            if feedback == "good":
                state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
                log_messages = log_message("Feedback accepted as 'good'. Waiting for next query.", log_messages)
            else:
                state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
                log_messages = log_message("Max feedback iterations reached. Waiting for next query.", log_messages)
        else:
            query = state['current_query']
            context, log_messages = find_relevant_section(query, state['sections'], state['section_embeddings'], log_messages)
            if feedback == "too vague":
                adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
            elif feedback == "not helpful":
                adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
            else:
                state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
                log_messages = log_message(f"Invalid feedback received: {feedback}", log_messages)
                return state['chat_history'], state, log_messages
            state['last_answer'] = adjusted_answer
            state['feedback_count'] += 1
            state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
            log_messages = log_message(f"Adjusted answer: {adjusted_answer}", log_messages)
    elif state['mode'] == 'exited':
        state['chat_history'].append(("Bot", "Session is over. Please download the log."))
        log_messages = log_message("User interacted after exiting.", log_messages)
    return state['chat_history'], state, log_messages

# Initial state
initial_state = {
    'document_text': None,
    'sections': None,
    'section_embeddings': None,
    'current_query': None,
    'feedback_count': 0,
    'mode': 'waiting_for_upload',
    'chat_history': [("Bot", "Please upload a PDF or TXT file to start.")],
    'last_answer': None
}

# Initialize log_messages outside initial_state
log_messages = []

# Logging function to store messages in memory
def log_message(message, log_messages):
    timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    log_entry = f"{timestamp} - {message}"
    log_messages.append(log_entry)
    return log_messages

# Function to save logs to file
def save_logs_to_file(log_messages):
    with open("support_bot_log.txt", "w") as log_file:
        for log_message in log_messages:
            log_file.write(log_message + "\n")

# Gradio interface
with gr.Blocks() as demo:
    state = gr.State(initial_state)
    file_upload = gr.File(label="Upload PDF or TXT file")
    chat = gr.Chatbot()
    user_input = gr.Textbox(label="Your query or feedback")
    submit_btn = gr.Button("Submit")
    download_log_btn = gr.Button("Download Log File")  # Changed to Button
    log_file = gr.File(label="Log File")  # Keep File for serving

    # Process file upload
    file_upload.upload(process_file, inputs=[file_upload, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)])

    # Handle user input and clear the textbox
    submit_btn.click(handle_input, inputs=[user_input, state, gr.State(log_messages)], outputs=[chat, state, gr.State(log_messages)]).then(lambda: "", None, user_input)

    # Update the log file just before download
    
 
    download_log_btn.click(
        lambda log_messages: "support_bot_log.txt",
        inputs=[gr.State(log_messages)],
        outputs=[log_file]
    )
    
    # Also save logs when user exits
    user_input.submit(
        lambda user_input, state, log_messages: (
            save_logs_to_file(log_messages) if user_input.lower() == "exit" else None,
            state
        ),
        [user_input, state, gr.State(log_messages)],
        [log_file, state]
    )

demo.launch(share=True)