Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from transformers import pipeline
|
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
import PyPDF2
|
7 |
|
8 |
-
# Set up logging:
|
9 |
log_file_path = "/tmp/support_bot_log.txt"
|
10 |
logging.basicConfig(filename=log_file_path, level=logging.INFO, format='%(asctime)s - %(message)s')
|
11 |
|
@@ -45,7 +45,7 @@ class SupportBotAgent:
|
|
45 |
|
46 |
def find_relevant_section(self, query):
|
47 |
"""
|
48 |
-
|
49 |
"""
|
50 |
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
|
51 |
query_embedding = self.embedder.encode(query, convert_to_tensor=True)
|
@@ -65,10 +65,10 @@ class SupportBotAgent:
|
|
65 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
66 |
common_words = query_words.intersection(section_words)
|
67 |
if len(common_words) >= 2:
|
68 |
-
logging.info(f"Keyword match
|
69 |
return section
|
70 |
|
71 |
-
logging.info(
|
72 |
return "I don’t have enough information to answer that."
|
73 |
|
74 |
def answer_query(self, query):
|
@@ -82,7 +82,7 @@ class SupportBotAgent:
|
|
82 |
return answer
|
83 |
|
84 |
def adjust_response(self, query, response, feedback):
|
85 |
-
"""
|
86 |
if feedback == "too vague":
|
87 |
context = self.find_relevant_section(query)
|
88 |
adjusted_response = f"{response}\n\n(More details:\n{context[:500]}...)"
|
@@ -96,18 +96,28 @@ class SupportBotAgent:
|
|
96 |
# --- Gradio Functions and App Workflow ---
|
97 |
|
98 |
def process_file(file, state):
|
99 |
-
"""Handles
|
|
|
100 |
if file is None:
|
101 |
logging.info("No file uploaded")
|
102 |
return [("Bot", "Please upload a TXT or PDF file.")], state
|
103 |
-
|
|
|
104 |
temp_path = os.path.join("/tmp", file.name)
|
105 |
with open(temp_path, "wb") as f:
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
try:
|
108 |
state["agent"] = SupportBotAgent(temp_path)
|
109 |
except Exception as e:
|
110 |
return [("Bot", f"Error processing file: {str(e)}")], state
|
|
|
111 |
state["chat_history"] = [("Bot", "File loaded successfully. Enter your query (or type 'exit' to end):")]
|
112 |
state["mode"] = "query"
|
113 |
state["last_query"] = ""
|
@@ -117,15 +127,17 @@ def process_file(file, state):
|
|
117 |
|
118 |
def process_input(user_input, state):
|
119 |
"""
|
120 |
-
Processes user input as
|
121 |
Typing 'exit' stops the session.
|
122 |
"""
|
123 |
if state.get("mode", "query") == "ended":
|
124 |
return state["chat_history"], state
|
|
|
125 |
if user_input.lower() == "exit":
|
126 |
state["chat_history"].append(("Bot", "Session ended. You may now download the log file."))
|
127 |
state["mode"] = "ended"
|
128 |
return state["chat_history"], state
|
|
|
129 |
if state["mode"] == "query":
|
130 |
state["last_query"] = user_input
|
131 |
answer = state["agent"].answer_query(user_input)
|
@@ -156,9 +168,10 @@ with gr.Blocks() as demo:
|
|
156 |
chat = gr.Chatbot()
|
157 |
user_input = gr.Textbox(label="Enter your query or feedback")
|
158 |
submit_btn = gr.Button("Submit")
|
|
|
159 |
log_file = gr.File(label="Download Log File", file_count="single", interactive=False, value=log_file_path)
|
160 |
|
161 |
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
|
162 |
submit_btn.click(process_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
|
163 |
|
164 |
-
demo.launch(share=True)
|
|
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
import PyPDF2
|
7 |
|
8 |
+
# Set up logging: write logs to a writable directory (/tmp)
|
9 |
log_file_path = "/tmp/support_bot_log.txt"
|
10 |
logging.basicConfig(filename=log_file_path, level=logging.INFO, format='%(asctime)s - %(message)s')
|
11 |
|
|
|
45 |
|
46 |
def find_relevant_section(self, query):
|
47 |
"""
|
48 |
+
Uses semantic similarity first, falling back to keyword search if needed.
|
49 |
"""
|
50 |
stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
|
51 |
query_embedding = self.embedder.encode(query, convert_to_tensor=True)
|
|
|
65 |
section_words = {word for word in section.lower().split() if word not in stopwords}
|
66 |
common_words = query_words.intersection(section_words)
|
67 |
if len(common_words) >= 2:
|
68 |
+
logging.info(f"Keyword match for query: {query} with common words: {common_words}")
|
69 |
return section
|
70 |
|
71 |
+
logging.info("No good keyword match found. Returning default response.")
|
72 |
return "I don’t have enough information to answer that."
|
73 |
|
74 |
def answer_query(self, query):
|
|
|
82 |
return answer
|
83 |
|
84 |
def adjust_response(self, query, response, feedback):
|
85 |
+
"""Adjusts the response based on feedback."""
|
86 |
if feedback == "too vague":
|
87 |
context = self.find_relevant_section(query)
|
88 |
adjusted_response = f"{response}\n\n(More details:\n{context[:500]}...)"
|
|
|
96 |
# --- Gradio Functions and App Workflow ---
|
97 |
|
98 |
def process_file(file, state):
|
99 |
+
"""Handles file upload and initializes the SupportBotAgent."""
|
100 |
+
logging.info("Received file upload request")
|
101 |
if file is None:
|
102 |
logging.info("No file uploaded")
|
103 |
return [("Bot", "Please upload a TXT or PDF file.")], state
|
104 |
+
|
105 |
+
# Save the uploaded file to /tmp. Handle both file objects and NamedString.
|
106 |
temp_path = os.path.join("/tmp", file.name)
|
107 |
with open(temp_path, "wb") as f:
|
108 |
+
if hasattr(file, "read"):
|
109 |
+
content = file.read()
|
110 |
+
else:
|
111 |
+
content = file
|
112 |
+
if isinstance(content, str):
|
113 |
+
content = content.encode("utf-8")
|
114 |
+
f.write(content)
|
115 |
+
|
116 |
try:
|
117 |
state["agent"] = SupportBotAgent(temp_path)
|
118 |
except Exception as e:
|
119 |
return [("Bot", f"Error processing file: {str(e)}")], state
|
120 |
+
|
121 |
state["chat_history"] = [("Bot", "File loaded successfully. Enter your query (or type 'exit' to end):")]
|
122 |
state["mode"] = "query"
|
123 |
state["last_query"] = ""
|
|
|
127 |
|
128 |
def process_input(user_input, state):
|
129 |
"""
|
130 |
+
Processes user input: as a query or feedback.
|
131 |
Typing 'exit' stops the session.
|
132 |
"""
|
133 |
if state.get("mode", "query") == "ended":
|
134 |
return state["chat_history"], state
|
135 |
+
|
136 |
if user_input.lower() == "exit":
|
137 |
state["chat_history"].append(("Bot", "Session ended. You may now download the log file."))
|
138 |
state["mode"] = "ended"
|
139 |
return state["chat_history"], state
|
140 |
+
|
141 |
if state["mode"] == "query":
|
142 |
state["last_query"] = user_input
|
143 |
answer = state["agent"].answer_query(user_input)
|
|
|
168 |
chat = gr.Chatbot()
|
169 |
user_input = gr.Textbox(label="Enter your query or feedback")
|
170 |
submit_btn = gr.Button("Submit")
|
171 |
+
# Provide a file component to download the log file
|
172 |
log_file = gr.File(label="Download Log File", file_count="single", interactive=False, value=log_file_path)
|
173 |
|
174 |
file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])
|
175 |
submit_btn.click(process_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)
|
176 |
|
177 |
+
demo.launch(share=True)
|