File size: 7,472 Bytes
e764d84
 
 
 
 
 
033375f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e367093
 
033375f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a28b9c
033375f
 
 
 
 
 
 
 
e764d84
033375f
 
 
 
 
 
 
 
 
 
e764d84
033375f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e764d84
033375f
 
e764d84
033375f
e764d84
033375f
e764d84
033375f
e764d84
 
033375f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import logging
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import PyPDF2

# Set up logging with immediate writing
logging.basicConfig(
    filename='support_bot_log.txt',
    level=logging.INFO,
    format='%(asctime)s - %(message)s',
    force=True  # Ensures any existing handlers are replaced and logging starts fresh
)
logger = logging.getLogger()

# Load models
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
embedder = SentenceTransformer('all-MiniLM-L6-v2')

# Helper function to extract text from PDF
def extract_text_from_pdf(file_path):
    text = ""
    with open(file_path, "rb") as file:
        pdf_reader = PyPDF2.PdfReader(file)
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
    return text

# Find the most relevant section in the document
def find_relevant_section(query, sections, section_embeddings):
    stopwords = {"and", "the", "is", "for", "to", "a", "an", "of", "in", "on", "at", "with", "by", "it", "as", "so", "what"}
    
    # Semantic search
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    similarities = util.cos_sim(query_embedding, section_embeddings)[0]
    best_idx = similarities.argmax().item()
    best_section = sections[best_idx]
    similarity_score = similarities[best_idx].item()
    
    SIMILARITY_THRESHOLD = 0.4
    if similarity_score >= SIMILARITY_THRESHOLD:
        logger.info(f"Found relevant section using embeddings for query: {query}")
        return best_section
    
    logger.info(f"Low similarity ({similarity_score}). Falling back to keyword search.")
    
    # Keyword-based fallback search with stopword filtering
    query_words = {word for word in query.lower().split() if word not in stopwords}
    for section in sections:
        section_words = {word for word in section.lower().split() if word not in stopwords}
        common_words = query_words.intersection(section_words)
        if len(common_words) >= 2:
            logger.info(f"Keyword match found for query: {query} with common words: {common_words}")
            return section
    
    logger.info(f"No good keyword match found. Returning default fallback response.")
    return "I don’t have enough information to answer that."

# Process the uploaded file with detailed logging
def process_file(file, state):
    if file is None:
        logger.info("No file uploaded.")
        return [("Bot", "Please upload a file.")], state
    
    file_path = file.name
    if file_path.lower().endswith(".pdf"):
        logger.info(f"Uploaded PDF file: {file_path}")
        text = extract_text_from_pdf(file_path)
    elif file_path.lower().endswith(".txt"):
        logger.info(f"Uploaded TXT file: {file_path}")
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
    else:
        logger.error(f"Unsupported file format: {file_path}")
        return [("Bot", "Unsupported file format. Please upload a PDF or TXT file.")], state
    
    sections = text.split('\n\n')
    section_embeddings = embedder.encode(sections, convert_to_tensor=True)
    state['document_text'] = text
    state['sections'] = sections
    state['section_embeddings'] = section_embeddings
    state['current_query'] = None
    state['feedback_count'] = 0
    state['mode'] = 'waiting_for_query'
    state['chat_history'] = [("Bot", "File processed. You can now ask questions.")]
    logger.info(f"Processed file: {file_path}")
    return state['chat_history'], state

# Handle user input (queries and feedback)
def handle_input(user_input, state):
    if state['mode'] == 'waiting_for_upload':
        state['chat_history'].append(("Bot", "Please upload a file first."))
        logger.info("User attempted to interact without uploading a file.")
    elif state['mode'] == 'waiting_for_query':
        query = user_input
        state['current_query'] = query
        state['feedback_count'] = 0
        context = find_relevant_section(query, state['sections'], state['section_embeddings'])
        if context == "I don’t have enough information to answer that.":
            answer = context
        else:
            result = qa_model(question=query, context=context)
            answer = result["answer"]
        state['last_answer'] = answer
        state['mode'] = 'waiting_for_feedback'
        state['chat_history'].append(("User", query))
        state['chat_history'].append(("Bot", f"Answer: {answer}\nPlease provide feedback: good, too vague, not helpful."))
        logger.info(f"Query: {query}, Answer: {answer}")
    elif state['mode'] == 'waiting_for_feedback':
        feedback = user_input.lower()
        state['chat_history'].append(("User", feedback))
        logger.info(f"Feedback: {feedback}")
        if feedback == "good" or state['feedback_count'] >= 2:
            state['mode'] = 'waiting_for_query'
            if feedback == "good":
                state['chat_history'].append(("Bot", "Thank you for your feedback. You can ask another question."))
                logger.info("Feedback accepted as 'good'. Waiting for next query.")
            else:
                state['chat_history'].append(("Bot", "Maximum feedback iterations reached. You can ask another question."))
                logger.info("Max feedback iterations reached. Waiting for next query.")
        else:
            query = state['current_query']
            context = find_relevant_section(query, state['sections'], state['section_embeddings'])
            if feedback == "too vague":
                adjusted_answer = f"{state['last_answer']}\n\n(More details:\n{context[:500]}...)"
            elif feedback == "not helpful":
                adjusted_answer = qa_model(question=query + " Please provide more detailed information with examples.", context=context)['answer']
            else:
                state['chat_history'].append(("Bot", "Please provide valid feedback: good, too vague, not helpful."))
                logger.info(f"Invalid feedback received: {feedback}")
                return state['chat_history'], state
            state['last_answer'] = adjusted_answer
            state['feedback_count'] += 1
            state['chat_history'].append(("Bot", f"Updated answer: {adjusted_answer}\nPlease provide feedback: good, too vague, not helpful."))
            logger.info(f"Adjusted answer: {adjusted_answer}")
    return state['chat_history'], state

# Initial state
initial_state = {
    'document_text': None,
    'sections': None,
    'section_embeddings': None,
    'current_query': None,
    'feedback_count': 0,
    'mode': 'waiting_for_upload',
    'chat_history': [("Bot", "Please upload a PDF or TXT file to start.")],
    'last_answer': None
}

# Gradio interface
with gr.Blocks() as demo:
    state = gr.State(initial_state)
    file_upload = gr.File(label="Upload PDF or TXT file")
    chat = gr.Chatbot()
    user_input = gr.Textbox(label="Your query or feedback")
    submit_btn = gr.Button("Submit")
    log_file = gr.File(label="Download Log File", value="support_bot_log.txt")  # Added for log download

    # Process file upload
    file_upload.upload(process_file, inputs=[file_upload, state], outputs=[chat, state])

    # Handle user input and clear the textbox
    submit_btn.click(handle_input, inputs=[user_input, state], outputs=[chat, state]).then(lambda: "", None, user_input)

demo.launch(share=True)