Spaces:
Building
Building
File size: 16,240 Bytes
5090140 28ed44f 177c5b5 28ed44f 0c730b1 10660a7 bb706d3 687c2f0 10660a7 28ed44f 1c310be 28ed44f 7f5b560 177c5b5 46953d2 28ed44f 7f5b560 8da6a04 46953d2 8da6a04 687c2f0 8da6a04 687c2f0 8da6a04 28ed44f 8da6a04 bb706d3 8da6a04 687c2f0 8da6a04 177c5b5 28ed44f 177c5b5 46953d2 28ed44f 46953d2 177c5b5 8da6a04 0c730b1 28ed44f 8da6a04 687c2f0 8da6a04 32fb8f8 8da6a04 32fb8f8 8da6a04 646f8a3 8da6a04 646f8a3 8da6a04 46953d2 177c5b5 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 8b01918 1dc5b0f 8b01918 10660a7 8b01918 46953d2 f080583 8b01918 d23826b 8f325c3 8b01918 ee5661b 8f325c3 ee5661b 8f325c3 ee5661b 8f325c3 ee5661b 4446897 ee5661b 8f325c3 8b01918 8f325c3 8b01918 8f325c3 f080583 8f325c3 f080583 8f325c3 8b01918 8f325c3 8b01918 f080583 46953d2 8da6a04 8b01918 ee5661b 8b01918 ee5661b 8b01918 ee5661b 0650b3a 8da6a04 0c730b1 8da6a04 46953d2 8da6a04 46953d2 8da6a04 8b01918 28ed44f 8b01918 8da6a04 0f075d7 8b01918 8da6a04 0f075d7 8b01918 fc8c48e 8b01918 8da6a04 8b01918 8da6a04 8b01918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
# Memory database to store question-answer pairs
memory_database = {}
conversation_history = []
def load_and_split_document_basic(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
"""Loads and splits the document into chunks."""
loader = PyPDFLoader(file.name)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
chunks = text_splitter.split_documents(pages)
return chunks
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_or_update_database(data, embeddings):
if os.path.exists("faiss_database"):
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
db.add_documents(data)
else:
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_similarity(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]
prompt = """
Answer the question based on the following information:
Conversation History:
{history}
Context from documents:
{context}
Current Question: {question}
If the question is referring to the conversation history, use that information to answer.
If the question is not related to the conversation history, use the context from documents to answer.
If you don't have enough information to answer, say so.
Provide a concise and direct answer to the question:
"""
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
return full_response.strip()
def manage_conversation_history(question, answer, history, max_history=5):
history.append({"question": question, "answer": answer})
if len(history) > max_history:
history.pop(0)
return history
def is_related_to_history(question, history, threshold=0.3):
if not history:
return False
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history])
similarity = get_similarity(question, history_text)
return similarity > threshold
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract() # Remove scripts and styles
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit
print(f"Starting Google search for term: '{term}'")
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
print(f"Successfully retrieved search results page (start={start})")
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No results found on this page")
break
print(f"Found {len(result_block)} results on this page")
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Processing link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
print(f"Successfully extracted text from {link}")
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found for this result")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Search completed. Total results: {len(all_results)}")
print("Search results:")
for i, result in enumerate(all_results, 1):
print(f"Result {i}:")
print(f" Link: {result['link']}")
if result['text']:
print(f" Text: {result['text'][:100]}...") # Print first 100 characters
else:
print(" Text: None")
print("End of search results")
if not all_results:
print("No search results found. Returning a default message.")
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
global conversation_history
if not question:
return "Please enter a question."
model = get_model(temperature, top_p, repetition_penalty)
embed = get_embeddings()
# Check if the FAISS database exists
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
database = None
if web_search:
search_results = google_search(question)
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
if database is None:
# Create the database with web search results if it doesn't exist
database = FAISS.from_documents(web_docs, embed)
else:
# Add web search results to the existing database
database.add_documents(web_docs)
database.save_local("faiss_database")
context_str = "\n".join([doc.page_content for doc in web_docs])
prompt_template = """
Answer the question based on the following web search results:
Web Search Results:
{context}
Current Question: {question}
If the web search results don't contain relevant information, state that the information is not available in the search results.
Provide a concise and direct answer to the question without mentioning the web search or these instructions:
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(context=context_str, question=question)
else:
if database is None:
return "No documents available. Please upload documents or enable web search to answer questions."
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
if is_related_to_history(question, conversation_history):
context_str = "No additional context needed. Please refer to the conversation history."
else:
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(question)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
prompt_val = ChatPromptTemplate.from_template(prompt)
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
answer = generate_chunked_response(model, formatted_prompt)
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
# Remove any remaining prompt instructions from the answer
answer_lines = answer.split('\n')
answer = '\n'.join(line for line in answer_lines if not line.startswith('If') and not line.startswith('Provide'))
if not web_search:
memory_database[question] = answer
conversation_history = manage_conversation_history(question, answer, conversation_history)
return answer
def update_vectors(files, use_recursive_splitter):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
if use_recursive_splitter:
data = load_and_split_document_recursive(file)
else:
data = load_and_split_document_basic(file)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def extract_db_to_excel():
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
documents = database.docstore._dict.values()
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
df = pd.DataFrame(data)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
df.to_excel(excel_path, index=False)
return excel_path
def export_memory_db_to_excel():
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
df_memory = pd.DataFrame(data)
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
df_history = pd.DataFrame(data_history)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
df_history.to_excel(writer, sheet_name='Conversation History', index=False)
return excel_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Ask a question about your documents")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
def chat(question, history):
answer = ask_question(question, temperature_slider.value, top_p_slider.value, repetition_penalty_slider.value, web_search_checkbox.value)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
extract_button = gr.Button("Extract Database to Excel")
excel_output = gr.File(label="Download Excel File")
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
export_memory_button = gr.Button("Export Memory Database to Excel")
memory_excel_output = gr.File(label="Download Memory Excel File")
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |