File size: 13,783 Bytes
5090140
28ed44f
177c5b5
28ed44f
0c730b1
10660a7
 
 
bb706d3
687c2f0
10660a7
8ac8380
 
28ed44f
 
0ccfbeb
28ed44f
 
 
60a1c34
8ac8380
28ed44f
7f5b560
0ccfbeb
8da6a04
 
ddc0536
 
0ccfbeb
ddc0536
 
 
 
 
 
 
 
0ccfbeb
ddc0536
 
 
 
 
 
 
 
 
 
 
0ccfbeb
ddc0536
28ed44f
8da6a04
 
687c2f0
8da6a04
 
 
 
 
 
687c2f0
8da6a04
 
 
 
 
 
32fb8f8
8da6a04
 
 
 
4d152e0
8da6a04
4d152e0
 
 
 
646f8a3
8da6a04
4d152e0
8da6a04
 
10660a7
 
 
0ccfbeb
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d22ca
10660a7
 
 
0ccfbeb
10660a7
1dc5b0f
 
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
10660a7
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
 
10660a7
 
4d152e0
10660a7
1dc5b0f
10660a7
 
 
 
 
 
4d152e0
1dc5b0f
10660a7
1dc5b0f
4d152e0
10660a7
4d152e0
 
10660a7
1dc5b0f
 
0ccfbeb
8b01918
 
4d152e0
8b01918
10660a7
 
ac147b1
 
 
 
b5f8745
 
4c65765
b5f8745
ac147b1
b5f8745
4c65765
ac147b1
eac1164
ac147b1
cefe755
 
4c65765
b5f8745
4c65765
 
 
 
 
cefe755
ac147b1
 
0ccfbeb
8b01918
 
d23826b
8f325c3
 
8b01918
4d152e0
 
 
 
 
8f325c3
a09a99d
 
 
ac147b1
 
a09a99d
 
 
ac147b1
4d152e0
8f325c3
4d152e0
 
 
 
ea51797
4d152e0
 
680874a
8f325c3
 
 
 
 
ac147b1
 
8f325c3
d8b3320
 
8f325c3
 
ac147b1
0ccfbeb
4d152e0
0ccfbeb
ee5661b
4d152e0
 
0ccfbeb
4d152e0
 
0ccfbeb
 
4d152e0
 
0ccfbeb
d8b3320
 
4d152e0
 
 
f080583
4d152e0
 
 
 
 
d16acd0
 
4d152e0
 
 
 
 
 
 
 
 
8b01918
d8b3320
 
 
 
 
 
46953d2
8da6a04
8b01918
28ed44f
0ccfbeb
8da6a04
0f075d7
8b01918
 
 
 
0ccfbeb
8da6a04
0f075d7
8b01918
 
0ccfbeb
8b01918
 
 
 
 
 
4b05267
0ccfbeb
 
c86dfe0
 
 
0ccfbeb
4d152e0
8b01918
 
 
8da6a04
8b01918
697d921
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document  # Add this line

huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

def load_document(file: NamedTemporaryFile) -> List[Document]:
    """Loads and splits the document into pages."""
    loader = PyPDFLoader(file.name)
    return loader.load_and_split()

def update_vectors(files):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def clear_cache():
    if os.path.exists("faiss_database"):
        os.remove("faiss_database")
        return "Cache cleared successfully."
    else:
        return "No cache to clear."

def get_model(temperature, top_p, repetition_penalty):
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={
            "temperature": temperature,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "max_length": 1000
        },
        huggingfacehub_api_token=huggingface_token
    )

def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
    full_response = ""
    for i in range(max_chunks):
        chunk = model(prompt + full_response, max_new_tokens=max_tokens)
        chunk = chunk.strip()
        if chunk.endswith((".", "!", "?")):
            full_response += chunk
            break
        full_response += chunk
    return full_response.strip()

def extract_text_from_webpage(html):
    soup = BeautifulSoup(html, 'html.parser')
    for script in soup(["script", "style"]):
        script.extract()
    text = soup.get_text()
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = '\n'.join(chunk for chunk in chunks if chunk)
    return text

_useragent_list = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]

def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    max_chars_per_page = 8000

    print(f"Starting Google search for term: '{term}'")

    with requests.Session() as session:
        while start < num_results:
            try:
                user_agent = random.choice(_useragent_list)
                headers = {
                    'User-Agent': user_agent
                }
                resp = session.get(
                    url="https://www.google.com/search",
                    headers=headers,
                    params={
                        "q": term,
                        "num": num_results - start,
                        "hl": lang,
                        "start": start,
                        "safe": safe,
                    },
                    timeout=timeout,
                    verify=ssl_verify,
                )
                resp.raise_for_status()
                print(f"Successfully retrieved search results page (start={start})")
            except requests.exceptions.RequestException as e:
                print(f"Error retrieving search results: {e}")
                break

            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                print("No results found on this page")
                break
            
            print(f"Found {len(result_block)} results on this page")
            for result in result_block:
                link = result.find("a", href=True)
                if link:
                    link = link["href"]
                    print(f"Processing link: {link}")
                    try:
                        webpage = session.get(link, headers=headers, timeout=timeout)
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "text": visible_text})
                        print(f"Successfully extracted text from {link}")
                    except requests.exceptions.RequestException as e:
                        print(f"Error retrieving webpage content: {e}")
                        all_results.append({"link": link, "text": None})
                else:
                    print("No link found for this result")
                    all_results.append({"link": None, "text": None})
            start += len(result_block)

    print(f"Search completed. Total results: {len(all_results)}")
    
    if not all_results:
        print("No search results found. Returning a default message.")
        return [{"link": None, "text": "No information found in the web search results."}]

    return all_results

def rephrase_for_search(query, model):
    rephrase_prompt = PromptTemplate(
        input_variables=["query"],
        template="""
        Your task is to rephrase the given conversational query into a concise, search-engine-friendly format.
        Remove any conversational elements and focus on the core information need.
        Provide ONLY the rephrased query without any additional text or explanations.
        
        Conversational query: {query}
        
        Rephrased query:"""
    )
    
    chain = LLMChain(llm=model, prompt=rephrase_prompt)
    response = chain.run(query=query).strip()
    
    rephrased_query = response.replace("Rephrased query:", "").strip()
    
    if rephrased_query.lower() == query.lower() or len(rephrased_query) > len(query) * 1.5:
        common_words = set(['the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after'])
        keywords = [word.lower() for word in query.split() if word.lower() not in common_words]
        keywords = [word for word in keywords if word.isalnum()]
        return ' '.join(keywords)
    
    return rephrased_query

def ask_question(question, temperature, top_p, repetition_penalty, web_search):
    if not question:
        return "Please enter a question."

    model = get_model(temperature, top_p, repetition_penalty)
    embed = get_embeddings()

    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        database = None

    if web_search:
        original_query = question
        rephrased_query = rephrase_for_search(original_query, model)
        print(f"Original query: {original_query}")
        print(f"Rephrased query: {rephrased_query}")
        
        if rephrased_query == original_query:
            print("Warning: Query was not rephrased. Using original query for search.")
        
        search_results = google_search(rephrased_query)
        web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
        
        if database is None:
            database = FAISS.from_documents(web_docs, embed)
        else:
            database.add_documents(web_docs)
        
        database.save_local("faiss_database")
        
        context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
        
        prompt_template = """
        Answer the question based on the following web search results:
        Web Search Results:
        {context}
        Original Question: {original_question}
        Rephrased Search Query: {rephrased_query}
        If the web search results don't contain relevant information, state that the information is not available in the search results.
        Provide a concise and direct answer to the original question without mentioning the web search or these instructions.
        Do not include any source information in your answer.
        """
        prompt_val = ChatPromptTemplate.from_template(prompt_template)
        formatted_prompt = prompt_val.format(context=context_str, original_question=question, rephrased_query=rephrased_query)
    else:
        if database is None:
            return "No documents available. Please upload documents or enable web search to answer questions."

        retriever = database.as_retriever()
        relevant_docs = retriever.get_relevant_documents(question)
        context_str = "\n".join([doc.page_content for doc in relevant_docs])

        prompt_template = """
        Answer the question based on the following context:
        Context:
        {context}
        Current Question: {question}
        If the context doesn't contain relevant information, state that the information is not available.
        Provide a concise and direct answer to the question.
        Do not include any source information in your answer.
        """
        prompt_val = ChatPromptTemplate.from_template(prompt_template)
        formatted_prompt = prompt_val.format(context=context_str, question=question)

    full_response = generate_chunked_response(model, formatted_prompt)
    
    answer_patterns = [
        r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
        r"Provide a concise and direct answer to the question:",
        r"Answer:",
        r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:"
    ]
    
    for pattern in answer_patterns:
        match = re.split(pattern, full_response, flags=re.IGNORECASE)
        if len(match) > 1:
            answer = match[-1].strip()
            break
    else:
        answer = full_response.strip()

    # Add sources section
    if web_search:
        sources = set(doc.metadata['source'] for doc in web_docs)
        sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
        answer += sources_section

    return answer

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chat with your PDF documents and Web Search")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        update_button = gr.Button("Update Vector Store")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Conversation")
            question_input = gr.Textbox(label="Ask a question about your documents or use web search")
            submit_button = gr.Button("Submit")
        with gr.Column(scale=1):
            temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
            top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
            repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
            web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)

    def chat(question, history, temperature, top_p, repetition_penalty, web_search):
        answer = ask_question(question, temperature, top_p, repetition_penalty, web_search)
        history.append((question, answer))
        return "", history
    
    submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
    
    clear_button = gr.Button("Clear Cache")
    clear_output = gr.Textbox(label="Cache Status")
    clear_button.click(clear_cache, inputs=[], outputs=clear_output)

if __name__ == "__main__":
    demo.launch()