File size: 4,467 Bytes
5090140
28ed44f
 
0c730b1
bb706d3
28ed44f
 
 
 
 
 
 
 
 
 
 
bb706d3
 
28ed44f
bb706d3
 
28ed44f
 
 
 
bb706d3
 
 
 
 
 
28ed44f
 
 
 
 
 
0c730b1
 
28ed44f
 
 
 
 
 
 
 
 
6e76606
 
 
 
 
 
 
0c730b1
6e76606
28ed44f
 
 
6e76606
 
 
 
 
 
 
28ed44f
 
bb706d3
 
 
 
28ed44f
bb706d3
 
 
 
 
 
 
 
28ed44f
 
 
 
 
 
 
 
 
0c730b1
 
 
 
 
 
 
 
bb706d3
25c59df
 
0c730b1
25c59df
0c730b1
459b8b4
28ed44f
 
 
 
bb706d3
28ed44f
 
 
 
 
 
 
 
 
 
 
0c730b1
 
9873343
 
28ed44f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import json
import gradio as gr
import pandas as pd
from tempfile import NamedTemporaryFile

from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough

huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

def load_and_split_document(file):
    """Loads and splits the document into pages."""
    loader = PyPDFLoader(file.name)
    data = loader.load_and_split()
    return data

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def create_or_update_database(data, embeddings):
    if os.path.exists("faiss_database"):
        db = FAISS.load_local("faiss_database", embeddings)
        db.add_documents(data)
    else:
        db = FAISS.from_documents(data, embeddings)
    db.save_local("faiss_database")

prompt = """
Answer the question based only on the following context:
{context}
Question: {question}

Provide a concise and direct answer to the question:
"""

def get_model():
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={"temperature": 0.5, "max_length": 512},
        huggingfacehub_api_token=huggingface_token
    )

def generate_chunked_response(model, prompt, max_tokens=500, max_chunks=5):
    full_response = ""
    for i in range(max_chunks):
        chunk = model(prompt + full_response, max_new_tokens=max_tokens)
        full_response += chunk
        if chunk.strip().endswith((".", "!", "?")):
            break
    return full_response.strip()

def response(database, model, question):
    prompt_val = ChatPromptTemplate.from_template(prompt)
    retriever = database.as_retriever()
    
    context = retriever.get_relevant_documents(question)
    context_str = "\n".join([doc.page_content for doc in context])
    
    formatted_prompt = prompt_val.format(context=context_str, question=question)
    
    ans = generate_chunked_response(model, formatted_prompt)
    return ans

def update_vectors(files):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    for file in files:
        data = load_and_split_document(file)
        create_or_update_database(data, embed)
        total_chunks += len(data)
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."

def ask_question(question):
    if not question:
        return "Please enter a question."
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    model = get_model()
    return response(database, model, question)

def extract_db_to_excel():
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    
    documents = database.docstore._dict.values()
    data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
    df = pd.DataFrame(data)
    
    with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
        excel_path = tmp.name
        df.to_excel(excel_path, index=False)
    
    return excel_path

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chat with your PDF documents")
    
    with gr.Row():
        file_input = gr.File(label="Upload your PDF documents", file_types=[".pdf"], multiple=True)
        update_button = gr.Button("Update Vector Store")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
    
    with gr.Row():
        question_input = gr.Textbox(label="Ask a question about your documents")
        submit_button = gr.Button("Submit")
    
    answer_output = gr.Textbox(label="Answer")
    submit_button.click(ask_question, inputs=[question_input], outputs=answer_output)
    
    extract_button = gr.Button("Extract Database to Excel")
    excel_output = gr.File(label="Download Excel File")
    extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)

if __name__ == "__main__":
    demo.launch()