File size: 21,783 Bytes
5090140
28ed44f
177c5b5
28ed44f
0c730b1
10660a7
 
 
bb706d3
687c2f0
10660a7
28ed44f
 
 
 
 
1c310be
28ed44f
 
7f5b560
177c5b5
 
201ffe7
bdf60b8
46953d2
28ed44f
7f5b560
8da6a04
 
46953d2
8da6a04
687c2f0
8da6a04
 
 
 
 
687c2f0
8da6a04
 
 
 
 
 
 
 
 
 
 
 
 
28ed44f
8da6a04
 
bb706d3
8da6a04
 
 
 
 
 
 
687c2f0
8da6a04
 
 
 
 
 
177c5b5
 
 
 
28ed44f
177c5b5
 
46953d2
 
 
 
28ed44f
46953d2
177c5b5
 
 
 
 
8da6a04
0c730b1
28ed44f
8da6a04
687c2f0
8da6a04
 
 
 
 
 
32fb8f8
8da6a04
 
 
 
ea51797
8da6a04
ea51797
 
 
 
 
 
 
 
646f8a3
ea51797
 
 
 
 
 
8da6a04
ea51797
8da6a04
 
46953d2
 
 
 
 
 
177c5b5
 
 
 
 
 
 
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201ffe7
10660a7
 
 
 
 
1dc5b0f
 
10660a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
10660a7
 
 
 
 
1dc5b0f
10660a7
1dc5b0f
 
10660a7
 
9933931
 
10660a7
9933931
1dc5b0f
10660a7
 
 
 
 
 
9933931
1dc5b0f
10660a7
1dc5b0f
9933931
10660a7
9933931
 
10660a7
1dc5b0f
 
 
 
 
9933931
1dc5b0f
 
8b01918
1dc5b0f
8b01918
 
 
 
 
9933931
8b01918
10660a7
 
201ffe7
9933931
 
 
ea51797
 
 
 
 
 
201ffe7
ea51797
201ffe7
 
 
 
 
 
 
27b795a
 
 
 
 
 
 
 
 
 
 
 
a6df94d
 
 
 
 
 
 
 
 
 
 
 
 
201ffe7
8b01918
46953d2
f080583
8b01918
 
d23826b
8f325c3
 
8b01918
ee5661b
8f325c3
 
 
ee5661b
ea51797
8f325c3
 
 
9933931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea51797
9933931
 
 
 
 
 
a6df94d
 
 
 
 
 
9933931
 
 
8f325c3
9933931
 
 
8f325c3
 
 
 
 
 
 
0d16a9e
8f325c3
 
 
 
ee5661b
4446897
ee5661b
8f325c3
8b01918
8f325c3
 
 
 
8b01918
 
 
8f325c3
 
f080583
d370be6
 
07bfb82
 
 
 
 
 
d370be6
07bfb82
 
 
 
 
d370be6
07bfb82
0d16a9e
8b01918
 
8f325c3
8b01918
f080583
46953d2
8da6a04
8b01918
 
 
 
 
 
 
ee5661b
8b01918
 
 
 
 
ee5661b
8b01918
 
ee5661b
 
 
 
 
 
 
 
0650b3a
8da6a04
201ffe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c730b1
8da6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46953d2
 
 
 
8da6a04
 
 
46953d2
 
 
8da6a04
 
 
8b01918
28ed44f
8b01918
8da6a04
0f075d7
8b01918
 
 
 
 
 
8da6a04
0f075d7
8b01918
 
 
 
 
 
 
 
 
 
de5771f
 
8b01918
 
 
fc8c48e
8b01918
201ffe7
 
 
 
8b01918
 
 
 
 
 
 
8da6a04
8b01918
 
 
8da6a04
8b01918
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from datetime import datetime
from huggingface_hub.utils import HfHubHTTPError

huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

# Memory database to store question-answer pairs
memory_database = {}
conversation_history = []

def load_and_split_document_basic(file):
    """Loads and splits the document into pages."""
    loader = PyPDFLoader(file.name)
    data = loader.load_and_split()
    return data

def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
    """Loads and splits the document into chunks."""
    loader = PyPDFLoader(file.name)
    pages = loader.load()
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
    )
    
    chunks = text_splitter.split_documents(pages)
    return chunks

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def create_or_update_database(data, embeddings):
    if os.path.exists("faiss_database"):
        db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
        db.add_documents(data)
    else:
        db = FAISS.from_documents(data, embeddings)
    db.save_local("faiss_database")

def clear_cache():
    if os.path.exists("faiss_database"):
        os.remove("faiss_database")
        return "Cache cleared successfully."
    else:
        return "No cache to clear."

def get_similarity(text1, text2):
    vectorizer = TfidfVectorizer().fit_transform([text1, text2])
    return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]

prompt = """
Answer the question based on the following information:

Conversation History:
{history}

Context from documents:
{context}

Current Question: {question}

If the question is referring to the conversation history, use that information to answer.
If the question is not related to the conversation history, use the context from documents to answer.
If you don't have enough information to answer, say so.

Provide a concise and direct answer to the question:
"""

def get_model(temperature, top_p, repetition_penalty):
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={
            "temperature": temperature,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "max_length": 1000
        },
        huggingfacehub_api_token=huggingface_token
    )

def generate_chunked_response(model, prompt, max_tokens=200):
    full_response = ""
    total_length = len(prompt.split())  # Approximate token count of prompt
    
    while total_length < 7800:  # Leave some margin
        try:
            chunk = model(prompt + full_response, max_new_tokens=min(200, 7800 - total_length))
            chunk = chunk.strip()
            if not chunk:
                break
            full_response += chunk
            total_length += len(chunk.split())  # Approximate token count
            
            if chunk.endswith((".", "!", "?")):
                break
        except Exception as e:
            print(f"Error generating response: {str(e)}")
            break
    
    return full_response.strip()

def manage_conversation_history(question, answer, history, max_history=5):
    history.append({"question": question, "answer": answer})
    if len(history) > max_history:
        history.pop(0)
    return history

def is_related_to_history(question, history, threshold=0.3):
    if not history:
        return False
    history_text = " ".join([f"{h['question']} {h['answer']}" for h in history])
    similarity = get_similarity(question, history_text)
    return similarity > threshold

def extract_text_from_webpage(html):
    soup = BeautifulSoup(html, 'html.parser')
    for script in soup(["script", "style"]):
        script.extract()  # Remove scripts and styles
    text = soup.get_text()
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = '\n'.join(chunk for chunk in chunks if chunk)
    return text

_useragent_list = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]

def google_search(term, num_results=20, lang="en", timeout=5, safe="active", ssl_verify=None):
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    max_chars_per_page = 8000  # Limit the number of characters from each webpage to stay under the token limit

    print(f"Starting Google search for term: '{term}'")

    with requests.Session() as session:
        while start < num_results:
            try:
                user_agent = random.choice(_useragent_list)
                headers = {
                    'User-Agent': user_agent
                }
                resp = session.get(
                    url="https://www.google.com/search",
                    headers=headers,
                    params={
                        "q": term,
                        "num": num_results - start,
                        "hl": lang,
                        "start": start,
                        "safe": safe,
                    },
                    timeout=timeout,
                    verify=ssl_verify,
                )
                resp.raise_for_status()
                print(f"Successfully retrieved search results page (start={start})")
            except requests.exceptions.RequestException as e:
                print(f"Error retrieving search results: {e}")
                break

            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                print("No results found on this page")
                break
            
            print(f"Found {len(result_block)} results on this page")
            for result in result_block:
                link = result.find("a", href=True)
                title = result.find("h3")
                if link and title:
                    link = link["href"]
                    title = title.get_text()
                    print(f"Processing link: {link}")
                    try:
                        webpage = session.get(link, headers=headers, timeout=timeout)
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "title": title, "text": visible_text})
                        print(f"Successfully extracted text from {link}")
                    except requests.exceptions.RequestException as e:
                        print(f"Error retrieving webpage content: {e}")
                        all_results.append({"link": link, "title": title, "text": None})
                else:
                    print("No link or title found for this result")
                    all_results.append({"link": None, "title": None, "text": None})
            start += len(result_block)

    print(f"Search completed. Total results: {len(all_results)}")
    print("Search results:")
    for i, result in enumerate(all_results, 1):
        print(f"Result {i}:")
        print(f"  Title: {result['title']}")
        print(f"  Link: {result['link']}")
        if result['text']:
            print(f"  Text: {result['text'][:100]}...")  # Print first 100 characters
        else:
            print("  Text: None")
    print("End of search results")

    if not all_results:
        print("No search results found. Returning a default message.")
        return [{"link": None, "title": "No Results", "text": "No information found in the web search results."}]

    return all_results

def summarize_content(content, model):
    if content is None:
        return "No content available to summarize."

    # Approximate the token limit using character count
    # Assuming an average of 4 characters per token
    max_chars = 7000 * 4  # Leave some room for the prompt
    if len(content) > max_chars:
        content = content[:max_chars] + "..."
    
    summary_prompt = f"""
    Summarize the following content concisely:
    {content}
    Summary:
    """
    summary = generate_chunked_response(model, summary_prompt, max_tokens=200)
    return summary

def rank_search_results(titles, summaries, model):
    ranking_prompt = (
        "Rank the following search results from a financial analyst perspective. "
        f"Assign a rank from 1 to {len(titles)} based on relevance, with 1 being the most relevant. "
        "Return only the numeric ranks in order, separated by commas.\n\n"
        "Titles and summaries:\n"
    )
    
    for i, (title, summary) in enumerate(zip(titles, summaries), 1):
        ranking_prompt += f"{i}. Title: {title}\nSummary: {summary}\n\n"
    
    ranking_prompt += "Ranks:"
    
    try:
        ranks_str = generate_chunked_response(model, ranking_prompt)
        ranks = [float(rank.strip()) for rank in ranks_str.split(',') if rank.strip()]
        
        # Check if we have the correct number of ranks
        if len(ranks) != len(titles):
            raise ValueError("Number of ranks does not match number of titles")
        
        return ranks
    except Exception as e:
        print(f"Error in ranking: {str(e)}. Using fallback ranking method.")
        # Fallback: assign ranks based on original order
        return list(range(1, len(titles) + 1))

def ask_question(question, temperature, top_p, repetition_penalty, web_search):
    global conversation_history

    if not question:
        return "Please enter a question."

    model = get_model(temperature, top_p, repetition_penalty)
    embed = get_embeddings()

    # Check if the FAISS database exists
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        database = None

    if web_search:
        search_results = google_search(question)
        
        processed_results = []
        for index, result in enumerate(search_results, start=1):
            if result["text"] is not None:
                try:
                    summary = summarize_content(result["text"], model)
                    processed_results.append({
                        "title": result.get("title", f"Result {index}"),
                        "content": result["text"],
                        "summary": summary,
                        "index": index
                    })
                except Exception as e:
                    print(f"Error processing search result {index}: {str(e)}")
            else:
                print(f"Skipping result {index} due to None content")
        
        if not processed_results:
            return "No valid search results found."

        # Rank the results
        titles = [r["title"] for r in processed_results]
        summaries = [r["summary"] for r in processed_results]
        try:
            ranks = rank_search_results(titles, summaries, model)
        except Exception as e:
            print(f"Error in ranking results: {str(e)}. Using default ranking.")
            ranks = list(range(1, len(processed_results) + 1))

        # Update Vector DB
        current_date = datetime.now().strftime("%Y-%m-%d")
        update_vector_db_with_search_results(processed_results, ranks, current_date)
        
        # Prepare context for the question
        context_str = "\n\n".join([f"Title: {r['title']}\nSummary: {r['summary']}\nRank: {ranks[i]}" 
                                   for i, r in enumerate(processed_results)])
        
        prompt_template = """
        Answer the question based on the following web search results:
        Web Search Results:
        {context}
        Current Question: {question}
        If the web search results don't contain relevant information, state that the information is not available in the search results.
        Provide a concise and direct answer to the question without mentioning the web search or these instructions:
        """
        prompt_val = ChatPromptTemplate.from_template(prompt_template)
        formatted_prompt = prompt_val.format(context=context_str, question=question)
    else:
        if database is None:
            return "No documents available. Please upload documents or enable web search to answer questions."

        history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])

        if is_related_to_history(question, conversation_history):
            context_str = "No additional context needed. Please refer to the conversation history."
        else:
            retriever = database.as_retriever()
            relevant_docs = retriever.get_relevant_documents(question)
            context_str = "\n".join([doc.page_content for doc in relevant_docs])

        prompt_val = ChatPromptTemplate.from_template(prompt)
        formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)

    full_response = generate_chunked_response(model, formatted_prompt)
    
    # Extract only the part after the last occurrence of a prompt-like sentence
    answer_patterns = [
        r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
        r"Provide a concise and direct answer to the question:",
        r"Answer:"
    ]
    
    for pattern in answer_patterns:
        match = re.split(pattern, full_response, flags=re.IGNORECASE)
        if len(match) > 1:
            answer = match[-1].strip()
            break
    else:
        # If no pattern is found, return the full response
        answer = full_response.strip()

    if not web_search:
        memory_database[question] = answer
        conversation_history = manage_conversation_history(question, answer, conversation_history)

    return answer

def update_vectors(files, use_recursive_splitter):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        if use_recursive_splitter:
            data = load_and_split_document_recursive(file)
        else:
            data = load_and_split_document_basic(file)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."

def update_vector_db_with_search_results(search_results, summaries, ranks):
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) if os.path.exists("faiss_database") else FAISS.from_documents([], embed)
    
    current_date = datetime.now().strftime("%Y-%m-%d")
    
    for result, summary, rank in zip(search_results, summaries, ranks):
        doc = Document(
            page_content=summary,
            metadata={
                "search_date": current_date,
                "search_title": result["title"],
                "search_content": result["text"],
                "search_summary": summary,
                "rank": rank
            }
        )
        database.add_documents([doc])
    
    database.save_local("faiss_database")

def export_vector_db_to_excel():
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    
    documents = database.docstore._dict.values()
    data = [{
        "Search Date": doc.metadata["search_date"],
        "Search Title": doc.metadata["search_title"],
        "Search Content": doc.metadata["search_content"],
        "Search Summary": doc.metadata["search_summary"],
        "Rank": doc.metadata["rank"]
    } for doc in documents]
    
    df = pd.DataFrame(data)
    
    with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
        excel_path = tmp.name
        df.to_excel(excel_path, index=False)
    
    return excel_path
    
def extract_db_to_excel():
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    
    documents = database.docstore._dict.values()
    data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
    df = pd.DataFrame(data)
    
    with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
        excel_path = tmp.name
        df.to_excel(excel_path, index=False)
    
    return excel_path

def export_memory_db_to_excel():
    data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
    df_memory = pd.DataFrame(data)
    
    data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
    df_history = pd.DataFrame(data_history)
    
    with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
        excel_path = tmp.name
        with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
            df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
            df_history.to_excel(writer, sheet_name='Conversation History', index=False)
    
    return excel_path

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chat with your PDF documents")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        update_button = gr.Button("Update Vector Store")
        use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Conversation")
            question_input = gr.Textbox(label="Ask a question about your documents")
            submit_button = gr.Button("Submit")
        with gr.Column(scale=1):
            temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
            top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
            repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
            web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
    
    def chat(question, history, temperature, top_p, repetition_penalty, web_search):
        answer = ask_question(question, temperature, top_p, repetition_penalty, web_search)
        history.append((question, answer))
        return "", history
    
    submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
    
    export_vector_db_button = gr.Button("Export Vector DB to Excel")
    vector_db_excel_output = gr.File(label="Download Vector DB Excel File")
    export_vector_db_button.click(export_vector_db_to_excel, inputs=[], outputs=vector_db_excel_output)

    extract_button = gr.Button("Extract Database to Excel")
    excel_output = gr.File(label="Download Excel File")
    extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
    
    export_memory_button = gr.Button("Export Memory Database to Excel")
    memory_excel_output = gr.File(label="Download Memory Excel File")
    export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
    
    clear_button = gr.Button("Clear Cache")
    clear_output = gr.Textbox(label="Cache Status")
    clear_button.click(clear_cache, inputs=[], outputs=clear_output)

if __name__ == "__main__":
    demo.launch()